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Figure 1: An overview of LipType: Automatic segmentation of lip sequences and its classifcation into text with an end-to-end 
deep neural network. 

ABSTRACT 
Speech recognition is unreliable in noisy places, compromises pri-
vacy and security when around strangers, and inaccessible to people 
with speech disorders. Lip reading can mitigate many of these chal-
lenges but the existing silent speech recognizers for lip reading 
are error prone. Developing new recognizers and acquiring new 
datasets is impractical for many since it requires enormous amount 
of time, efort, and other resources. To address these, frst, we de-
velop LipType, an optimized version of LipNet for improved speed 
and accuracy. We then develop an independent repair model that 
processes video input for poor lighting conditions, when applica-
ble, and corrects potential errors in output for increased accuracy. 
We then test this model with LipType and other speech and silent 
speech recognizers to demonstrate its efectiveness. 

CCS CONCEPTS 
• Computing methodologies → Computer vision; • Human-
centered computing → Text input. 
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1 INTRODUCTION 
There are numerous scenarios where speech is not a viable mode 
of communication. First, the surroundings may not be favorable 
for speech-based communication: a person could be near a busy 
market or in a crowded restaurant where the surrounding noise 
makes speech difcult to recognize. Second, a person may not wish 
to speak out loud because of privacy and security concerns or could 
be in a public setting where others do not want to be disturbed, 
such as in a library or museum. Finally, and most importantly, many 
people have difculties in speaking or are unable to speak entirely 
due to a range of speech and neurological disorders1. Although 
many augmentative and alternative communication (AAC) devices 
are available to help them vocalize, these devices produce unnatural 
sounding vocalization. This prevents users from communicating ef-
fectively with other humans and technologies like voice-controlled 
virtual assistants. Hence, the development of better communica-
tion methods is needed to improve this population’s accessibility 
to the fellow humans and latest technological advancements. A 
system that can understand speech by visually interpreting the 
movements of the speaker’s lips, known as lip reading or silent 
speech recognition (Fig. 1), can mitigate many of these challenges. 
Since developing a new system and acquiring new datasets require 

1Statistics on voice, speech, and language, https://www.nidcd.nih.gov/health/statistics/ 
statistics-voice-speech-and-language 
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an enormous amount of time, efort, and other resources, in this 
work we exploited a state-of-the-art silent speech recognizers, Lip-
Net [9]. Based on preliminary investigations, we found out that 
LipNet and other existing recognizers have substantially slower 
response time due to their architecture. Besides, they do not per-
form well under poor lighting conditions and tend to make lexical 
and linguistic errors with varying speaking rates and accents [78]. 
As an initial step, we developed an independent repair model to 
enable LipNet and other existing recognizers to perform well in 
dark and dusky lighting conditions where the frontal pose of the 
user is not clearly visible to extract meaningful information, and 
to compensate for the recognition errors made by the recognizer. 
More reliable speech and silent speech systems could potentially be 
used as a medium for input and interaction with various computer 
systems, incorporated in day-to-day usage. 

The contribution of this work is thus threefold. First, the devel-
opment of LipType, an optimized version of LipNet for improved 
speed and accuracy. Second, the development of an independent 
repair model, a multi-stage pipeline compensating for poor light-
ing conditions and potential recognition errors for increased accu-
racy of speech and silent speech recognizers. Third, an empirical 
demonstration of the the repair model’s efectiveness on multiple 
speech and silent speech recognizers. Further, the source code2 and 
dataset3 used in this work are freely available for future research 
and development in the area. 

2 RELATED WORK 
This work intersects with four areas of interest: silent speech recog-
nition, low-light image enhancement, recognition error correction, 
and silent input and interaction on mobile devices. 

2.1 Silent Speech Recognition 
There is a rich literature on silent speech recognition. Here, we 
only discuss the works that are closely related to ours (see [111] 
for a comprehensive review). Recently, there have been attempts to 
apply deep learning to silent speech recognition [6, 12, 20–23, 93]. 
However, most of these approaches perform only at phoneme- or 
word-level. Koller et al. [64] trained an image classifer using convo-
lutional neural network (CNN) to diferentiate between visemes4 on 
a sign language dataset of signers mouthing words. Noda et al. [75] 
also used CNN to predict phonemes in spoken Japanese. Tamura 
et al. [97] used deep bottleneck features (DBF) to encode shallow in-
put features, such as latent dirichlet allocation (LDA) and GA-based 
informative feature (GIF) [99] for word recognition. Petridis and 
Pantic [81] also used DBF to encode every video frame and trained 
a long short-term memory (LSTM) classifer for word-level classif-
cation. Wand et al. [102], on the other hand, used an LSTM with 
histogram of oriented gradient (HoG) input features to recognize 
words. Chung and Zisserman [22] developed CNN architectures 
for classifying multi-frame time series of lip movements. LipNet 
[9] is an end-to-end model for phrase-level lip reading by pre-
dicting character sequences (further discussed in a later section). 

2Source code, https://github.com/hci-ucm/LipType 
3Dataset, https://www.asarif.com/resources/LipType_Data.zip 
4Visemes are visual equivalent of phonemes. A viseme represents the position of the 
face and mouth when making a sound. 

Afouras et al. [3] also enabled phrase-level lip reading by utilizing 
an encoder-decoder structure with multi-head attentions. Chung 
et al. [19] developed the Watch, Listen, Attend and Spell (WLAS) 
network that uses dual attention mechanism for visual attention to 
transcribe videos of mouth motion to characters. 

2.2 Low-Light Image Enhancement 
The problems of underexposed low-light images are very common, 
solutions to mitigate it have been a popular research topic. Re-
searchers have developed a variety of techniques that can improve 
image quality. The classical image enhancement methods involve 
two categories: i) retinex-based methods, which are based on retinex 
theory [65]. Recent examples of these approaches are Lime [42], 
naturalness preserved enhancement [104], Retinex [56], and simul-
taneous refectance and illumination estimation [36]. ii) histogram 
equalization methods, which manipulate the gray levels of individ-
ual pixels based on the image histogram. Recent examples include 
contextual and variational contrast enhancement [14], weighted 
thresholded histogram equalization [7], and layered diference rep-
resentation [66]. In recent years, several methods based on deep 
learning image processing techniques have been proposed. One 
successful example is the developed pipeline for processing low-
light images based on end-to-end training of a fully-convolutional 
network [15]. However, they reported that their model showed 
imperfect results for humans faces. Another work [105] utilizes 
encoder-decoder network to achieve the low-light enhancement 
for real under exposed images. Other works [2, 67, 106] have also 
showed the efectiveness of deep learning methods on low light 
image enhancement. 

2.3 Recognition Error Correction 
Automatic detection and correction of recognition errors have be-
come an important research area. The aim is to automatically detect 
and partially or fully correct errors, regardless of the recognition 
system used. Zhou et al. [110] addressed the issue of error detection 
in recognition systems using data-mining classifers such as naive 
Bayes (NB), neural networks (NN), and support vector machines 
(SVM). These classifers were trained to identify errors using conf-
dence scores and linguistic information present in the recognized 
output. Another work [5] proposed extraction of additional features 
from the confusion networks to estimate correctness probability 
using logistic regression. Pellegrini et al. [79] investigated the use 
of a Markov chains (MC) classifer with two states: error state and 
correct state, to model errors. Chen et al. [17] proposed a system for 
error detection in conversational spoken language translation. This 
system uses additional features provided as the feedback of statisti-
cal machine translation (SMT), including SMT confdence estimates, 
posteriors from named entity detection (NED) and an automated 
word boundary detector to verify the word boundaries of recog-
nition output, in order to improve error detection and correction. 
Sarma et al. [89] built a recognition error detector and corrector us-
ing co-occurrence analysis. In the same context, Bassil and Semaan 
[11] proposed a post-editing ASR error correction method based 
on Microsoft N-Gram dataset for detecting and correcting spelling 
errors generated by recognition systems. The detection process 
detects on-word spelling errors in reference with the Microsoft 

https://github.com/hci-ucm/LipType
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N-Gram dataset, and the correction process generates correction 
suggestions for the detected word errors by selecting the best candi-
date for the correction using contextual information. Other works 
[37, 68, 80, 91] have explored non-decoder based post-processing 
error detection and correction. 

2.4 Silent Input and Interaction on Mobile 
Devices 

Silent input enables users to interact with mobile devices using 
speech commands without the need to produce any audible sound. 
There have been several previous attempts in achieving silent 
speech interaction. These works have explored silent input and 
interaction techniques using diferent sensors (e.g., electromagnetic 
articulography (EMA) [33, 38, 46], electroencephalogram (EEG) 
[83], electromyography (EMG) [57–59, 72, 90, 103], ultrasound 
imaging [29, 30, 35, 51, 52, 61], [38, 46], vibrational sensors of glot-
tal activity [74, 77, 86, 98], speech motor cortex implants [10, 13] 
and non-audible murmur (NAM) microphone [47, 48, 73]) to re-
cover the speech content produced without vibration of the vocal 
folds by detecting tongue, facial, and throat movements. Another 
research [13, 28, 84, 95, 96] used a brain-computer interface (BCI) 
with intracortical microelectrode to predict users’ intended speech 
information directly from the brain activity involved during speech 
production. Another work [53] used a multimodal imaging sys-
tem for speech recognition, focusing on lip visualization. Another 
work [60] presented a wearable interface, AlterEgo, which utilizes 
EMG sensors placed on face to capture the neuromuscular signals. 
However, these prior works use an invasive setup, impeding the 
adaptability of these solutions in real-world scenarios. More re-
cently, improvements have been made in silent speech recognition 
by incorporating advanced machine learning techniques and com-
puter vision technologies [3, 6, 9, 12, 20, 21, 21–23, 82, 93]. One 
recent research [94] developed an interaction technique that allows 
users to issue commands on their smartphone through silent speech. 
They used front camera as a natural sensor to capture the motion 
of the lips, and recognize it into text. 

3 LIPTYPE: AN OPTIMIZED LIPNET MODEL 
We used LipNet as the backbone model based on a study comparing 
LipNet [9], LCANet [107], Transformer [3], and WAS [19] models. 
The former two are trained on GRID dataset [27], the latter two on 
LRS dataset [3]. In an evaluation with 50 random videos from the 
respective datasets, LipNet and LCANet yielded similar WER ( 4%), 
while Transformer and WAS were more error-prone (> 49% WER). 
Of the two best performed models, we picked LipNet as it is more 
widely used than LCANet. 

LipNet [9] is an existing end-to-end sentence-level model that 
maps a variable-length sequence of video frames to text, making use 
of a deep 3-dimensional convolutional neural network (3D-CNN) 
[55], a recurrent network, and the connectionist temporal classi-
fcation loss. The model was trained on grid dataset comprising 
of highly constrained vocabulary. Although LipNet has proven to 
be promising, it has several limitations. First, LipNet is focused on 
capturing spatial and temporal information using deep 3D-CNN 
that neglects the hidden information between channel correlations 
in spatial and temporal directions [31], limiting the performance of 

the architecture. Further, the use of a deep 3D-CNN unnecessarily 
increases computational complexity and memory intensiveness. 
We address these issues in LipType, an optimized version of LipNet 
for improved speed and accuracy. 

In LipType, we combined a shallow 3D-CNN (1-layer) and a deep 
2D-CNN (34-layer ResNet [44]) integrated with squeeze and ex-
citation (SE) [50] blocks (SE-ResNet) to capture both spatial and 
temporal information. We used this hybrid-CNN model to address 
the limitations of 3D-CNN that it neglects the information between 
channel correlations and increases computational complexity, as 
well as 2D-CNN’s inability to capture temporal information. SE-
ResNet adaptively recalibrates channel-wise feature responses by 
explicitly modelling inter-dependencies between the channels to 
improve the quality of feature representations. Moreover, it is com-
putationally lightweight and imposes only a slight increase in model 
complexity and computational burden [50]. Thus, we hypothesize 
that the proposed hybrid frontend module will reduce the overall 
computational complexity of LipNet and improve its performance. 

3.1 The Network 
The LipType network consists of two sub-modules (or sub-
networks): a spatiotemporal feature extraction frontend that takes 
a sequence of video frames and outputs one feature vector per 
frame and a sequence modeling module that inputs the sequence 
of per-frame feature vectors and outputs a sentence character by 
character, as shown in Fig. 2. We describe these modules in the 
following sections. 

3.1.1 Spatiotemporal Feature Extraction. It starts with the extrac-
tion of a mouth-centred cropped image of size H:100 × W:50 pixels 
per video frame. For this, videos are frst pre-processed using DLib 
face detector [62] and the iBug face landmark predictor [88] with 68 
facial landmarks combined with Kalman Filtering. Then, a mouth-
centred cropped image is extracted by applying afne transforma-
tions. The sequence of T mouth-cropped frames are then passed to 
3D-CNN, with a kernel dimension of T:5× W:7 × H:7, followed by 
Batch Normalization (BN) [54] and Rectifed Linear Units (ReLU) 
[4]. The extracted feature maps are then passed through 34-layer 
2D SE-ResNet that gradually decreases the spatial dimensions with 
depth, until the feature becomes a single dimensional tensor per 
time step. 

3.1.2 Sequence Modeling. The extracted features are processed by 
2-Bidirectional Gated Recurrent Units (Bi-GRUs) [18]. Each time-
step of the GRU output is processed by a linear layer, followed by 
a softmax layer over the vocabulary, then an end-to-end model is 
trained with connectionist temporal classifcation (CTC) loss [40]. 
The softmax output is decoded with a left-to-right beam search [25] 
using Stanford-CTC’s decoder [70] and 5-gram character language 
model [41] to recognize the spoken utterances. The model is capable 
of mapping variable-length video sequences to text sequences. 

4 EXPERIMENT 1: LIPTYPE MODEL 
We conducted an experiment to compare the performance of LipNet 
and LipType. 
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Figure 2: Architecture of LipType: a sequence of T frames is fed to a 1-layer 3D CNN, followed by 34-layer 2D SE-ResNet for 
spatiotemporal feature extraction. The extracted features are processed by two Bi-GRUs, followed by a linear layer and a 
softmax. The network is trained entirely end-to-end with CTC loss. 

4.1 Dataset 
For a fair comparison between the two models, we trained the 
LipType model on the same GRID dataset [27] on which the LipNet 
model was trained. It comprises of short and formulaic video clips 
of a person’s face when uttering a highly constrained vocabulary 
in a specifc order (N = 34). Similar to a previous experiment 
investigating the performance of LipNet with overlapped speakers 
[9], this experiment used 21,635 videos for training and 7,140 videos 
for evaluation. 

4.2 Implementation 
To avoid any potential confounding factor, we trained both models 
from scratch with the same training parameters. The number of 
frames was fxed to 75. Longer image sequences were truncated and 
shorter sequences were padded with zeros. We applied a channel-
wise dropout [92] of 0.5. The model was trained end-to-end by the 
Adam optimizer [63] for 60 epochs with a batch size of 50. The 
learning rate was set to 10−4. The network was implemented based 
on the Keras deep-learning platform with TensorFlow [1] as the 
backend. We trained and tested both models on NVIDIA GeForce 
1080Ti GPU board. 

4.3 Performance Metrics 
We used the following metrics to benchmark the proposed frame-
work. 

• Word error rate (WER) is the minimum number of opera-
tions required to transform the predicted text to the ground 
truth, divided by the number of words in the ground truth. 
It is calculated using the following equation, where S is the 
number of substitutions, D is the number of deletions, I is 
the number of insertions, and N is the number of words in 
the ground truth. 

where T is the number of recognized words, t is the sum of 
speaking time and computation time in seconds, the constant 
60 is the number of seconds per minute, and the factor of 
one ffth accounts for the average length of a word in the 
English language. 

|T | − 1 1 
WPM = × 60 × (2)

t 5 

• Computation time (CT) is the total time required by the 
model to predict a phrase. It does not include the time users 
take to speak a phrase. 

(a) (b) 

(c) 

S + D + I Figure 3: Performance comparison of LipNet and LipType in 
W ER = (1) terms of a) word error rate, b) words per minute, and c) com-N 

putation time. Reported values are the average of all values. • Words per minute (WPM) is a commonly used text entry 
Values inside the brackets are standard deviations (SD). Er-metric that signifes the rate in which words (= 5 chars) are 
ror bars represent ±1 standard deviation. entered [8]. It is calculated using the following equation, 
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4.4 Results 
In the experiment, LipType outperformed LipNet in terms of input 
speed, accuracy, and computation time. LipType achieved 2.6% WER, 
6.4 WPM, and 6.3 seconds CT (Fig. 3). In comparison with LipNet, 
it exhibited a 47% reduction in WER, 39% increase in WPM, and 8.6 
seconds reduction in CT. These fndings confrm our intuition that 
extracting spatiotemporal features using the hybrid of a shallow 
3D-CNN and a deep 2D-CNN integrated with SE blocks, instead of 
only 3D-CNN, will reduce the overall computational complexity 
and improve performance. 

5 REPAIR MODEL: LIGHT ENHANCEMENT 
AND ERROR REDUCTION 

This section presents a new repair model, a multi-stage pipeline that 
accounts for poor lighting conditions in input videos and potential 
errors in the recognition. It includes a pre-processing step to enhance 
videos with poor lighting conditions and a post-processing step to 
automatically detect and correct potential errors generated by the 
recognizer. A key consideration for this model was its independence, 
to make sure it is not reliant on a specifc recognizer so that it can be 
used with a variety of speech and silent speech recognition models. 

5.1 Pre-Processing: Light Enhancement 
There are various factors that can afect the performance of silent 
speech recognition, for example, uncontrolled lighting, blur, low-
resolution, compression artifacts, occlusions, viewing angles, ac-
cent, pace of speech, etc. However, most of the factors can be miti-
gated by replacing the hardware (blur, low-resolution, compression 
artifacts, etc.) or by the user (occlusions, viewing angles, pace of 
speech, etc.). Lighting, in contrast, is one the factor that cannot 
always be controlled. 

Making recognition more reliable under uncontrolled lighting 
conditions is one of the major challenges for practical silent speech 
recognition models. Existing models do not account for lighting 
variations, making them unreliable in poorly lit places. We tackle 
this by adding a pre-processing step to the LipType recognition 
model. For this, we improved GLADNet [105], a low-light image 
enhancement network, and adapted it for enhancing input videos. 
We used GLADNet because it demonstrated a much better perfor-
mance with actual under-exposed images compared to the other 
models, both in terms of quality [32, 36, 42, 56] and computation 
complexity [2, 15, 67, 106]. 

5.1.1 The Network. The light enhancement network learns an end-
to-end mappings from low-light images to normal-light images. 
It processes videos in a frame-by-frame manner, as illustrated in 
Fig. 4. The architecture of the network comprises of two adjacent 
steps: the frst is for global illumination estimation and the second 
is for detail reconstruction. 

In the global illumination estimation step, input is down-sampled 
to a fxed size feature map using nearest-neighbor interpolation. 
Then, it is passed through an encoder-decoder network5 to estimate 
the global illumination of the input. The estimated feature maps 
5In order to reduce computation, we changed the GLADNet network dimension from 
fve down- and fve up-sampling blocks to three down- and three up-sampling blocks. 
A preliminary investigation did not identify a signifcant efect on variations in layer 
dimensions on the network’s performance. 

are then re-scaled to the original size using a resize convolution 
block. Then, the re-scaled feature maps are passed to the detail 
reconstruction step comprising of three convolutional layers. This 
step adjusts the illumination of the input image by assembling pre-
dicted global illumination and input image information, and flls 
in the details lost during the down- and up-sampling processes. In-
spired by a previous work [109], we investigated the consequences 
of replacing the L1 loss function used in the training of GLADNet 
with alternative loss functions. Given a collection of N training 
sample pairs Xi , Yi , where Xi is low-light input image and Yi is 
normal-light ground truth image, the following loss functions can 
be defned. 

(1) L1 Loss (or mean-absolute-error loss) minimizes the sum of 
the absolute diferences between the predicted or generated 
image and the ground truth. Õ 

L1(X , Y ) = 
1 N 

(Xi − Yi ) (3)
N 

i=1 

(2) L2 Loss (or mean-squared-error loss) minimizes the sum of 
the squared diferences between the predicted or generated 
image and the ground truth. Õ1 N 

L2(X , Y ) = (Xi − Yi )
2 (4)

N 
i=1 

(3) Multi-scale structural similarity loss (MSSSIM) [109] 
minimizes the loss related to the sum of structural-similarity 
scores across all image pixels, in terms of luminance, contrast, 
and structure. 

NÕ 
MSSSIM(X , Y ) = − MSSSIM(Xi − Yi ) (5) 

i=1 

(4) MSSSIM-L1 loss captures MSSSIM’s ability to preserve the 
contrast in high-frequency regions and L1’s ability to pre-
serves colors and luminance. In the equation below, G is 
the Gaussian flter, α is the weighting factor to roughly bal-
ance the contribution of the two losses. We empirically set 
α = 0.816. 

MSSSIM-L1(X , Y ) = α · MSSSIM + (1 − α) · Gσ · L1 (6) 

(5) MSSSIM-L2 loss captures MSSSIM’s ability to preserve the 
contrast in high-frequency regions and L2’s ability to remove 
noise and ringing artifacts. Like MSSSIM-L1, α = 0.81 and G 
is the Gaussian flter. 

MSSSIM-L2(X , Y ) = α · MSSSIM + (1 − α) · Gσ · L2 (7) 

5.2 Experiment 2: Light Enhancement Network 
We evaluated the performance of the light enhancement network 
trained with the above fve loss functions. 

5.2.1 Dataset. We trained and validated the network on the GLAD-
Net dataset [105] that comprises of 5,000 image pairs of low and 
normal light images. We used 4,000 pairs for training and the re-
maining 1,000 pairs for testing. 

6In an investigation, results were not afected by small variations in α . 
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Figure 4: Architecture of the pre-processing (light enhancement) network: a sequence of low-light images is fed through the 
network where the enhanced images are compared with the normal-light images to compute the loss, which is then backprop-
agated to fne-tune and optimize the model weights and biases. 

5.2.2 Performance Metrics. We used the following two standard 
image quality metrics [49]. 

• Peak signal to noise ratio (PSNR) computes the peak 
signal-to-noise ratio between two images in decibels. This 
ratio is used as a quality measurement between the original 
and an enhanced image. The higher the PSNR the better the 
quality of the enhanced image. 

• Structural similarity metric (SSIM) measures the percep-
tual diference between two similar images. Unlike PSNR, 
SSIM is based on visible structures in the image. The lower 
the SSIM the better the quality of the enhanced image. 

5.2.3 Implementation. We trained the network for 70 epochs with 
a batch size of 32. It was optimized using Adam [63]. The learning 
rate was set to 10−3. The network was implemented on the Keras 
deep-learning platform with TensorFlow [1] as the backend. We 
trained and tested the network on NVIDIA GeForce 1080Ti GPU 
board. 

5.2.4 Results. Table 1 presents the performance comparison of 
GLADNet trained on the aforementioned fve loss functions in 
terms of averaged PSNR and SSIM. It can be seen that MSSSIM-L1 
achieved the highest PSNR and outperformed other loss functions 
substantially in the SSIM measure. Therefore, we used GLADNet 
trained with MSSSIM-L1 loss function to enhance poor lighting 
input videos for more reliable silent speech recognition. 

5.3 Post-Processing: Error Reduction 
This section presents a new algorithm for predicting and automati-
cally correcting potential recognition errors by a speech or silent 
speech recognizer. It comprises of two sub-modules: an error min-
imization module that corrects potential errors in the recognized 
character sequence using deep denoising autoencoder (DDA) [101] 
and a sequence decoder module that converts corrected character 
sequence to meaningful word sequences using spell-checker and a 
custom language model. The architecture of the network is illus-
trated in Fig. 5. 

5.3.1 Error Reduction. DDA has been successful in the context of 
reconstructing a noisy signal [34, 69]. In this work, we used DDA to 

correct the character sequence predicted by the recognizer. The pre-
dicted sequence is represented in the form of a matrix, where each 
row is a one-hot7 encoded vector, pointing to a particular character 
out of all. An input to autoencoder is converted to a fxed length 
sequence: 28 in this case (26 letters of the English alphabet, 1 space 
character, and 1 newline character), either by subdividing the se-
quence or by appending zero vectors, depending on the length of the 
sequence. This fxed length matricized sequence is fed-forwarded 
through a DDA to obtain an improved character sequence. The 
DDA is trained with the matricized incorrect character sequence 
as input and the matricized correct sequence as the labels. This 
helped in reconstructing the sequence, thus reducing the errors. In 
order to quantify the errors between incorrect sequence and the 
ground truth, we used cross-entropy loss [108], which is given by 
the following equation, where x represents the matricized incorrect 
character sequence and z represents the matricized ground truth 
sequence. 

dÕ 
Loss(x , z) = − [xk loдzk + (1 − xk )loд(1 − zk )] (8) 

k=1 

5.3.2 Sequence Decoder. The corrected character sequence em-
bedded with the space and newline characters is frst combined to 
form a sequence of words. The resultant word sequence is then 
passed to the spell checker8 to be checked for spelling correctness 
for auto-correction, when necessary. In addtion, a language model 
(LM) was used to get the most probable sequence of words. We 
used a traditional count-based LM9. Typically, n-gram analysis in 
count-based LM is a forward n-gram. However, we explored and 
evaluated the advantage of a bidirectional n-gram modeling that 
accounts for both forward and backward directions. Formally, we 
consider a string of n words, W = w1, w2, ..., wn . In a forward n-
gram, the probability of each word is estimated depending on the 
preceding words: 

Pf orward (W ) =P(w1 | < start >) ∗ P(w2 |w1)∗ 
(9)

P(w3 |w2) ∗ ... ∗ P(< end > |wn ) 

7Encodes categorical data using a one-of-K scheme. 
8How to write a spelling corrector, http://norvig.com/spell-correct.html 
9A count-based LM follows the general idea of making nth order Markov assumptions 
and calculating the n-gram probabilities through the means of counting. 

http://norvig.com/spell-correct.html
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Metric Low-Light Image Enhanced Image 
Loss Function 

L1 L2 MSSSIM MSSSIM-L1 MSSSIM-L2 

PSNR 19.74 26.22 25.66 26.11 27.34 26.13 
SSIM 0.46 0.7822 0.7574 0.7890 0.8091 0.7911 

Table 1: Averaged peak signal to noise ratio (PSNR) and structural similarity metric (SSIM) for the fve investigated loss func-
tions. For MSSSIM, the reported values are obtained as averages of the three color channels (RGB). The best results are high-
lighted in bold. 
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Figure 5: Architecture of post-processing (error reduction) network: the predicted raw sequence is fed to DDA, followed by 
spell checker and a custom language model. 

In contrast, in a backward n-gram the probability of each word is 
estimated depending on the succeeding words: 

Pbackward (W ) =P(< start > |w1) ∗ P(w1 |w2)∗ 
(10)

P(w2 |w3) ∗ ... ∗ P(wn | < end >) 

The combined probability of a sentence, thus, is computed by multi-
plying the forward and backward n-gram probability of each word: 

Pcombined (W ) =(Pf orward (W1) ∗ Pbackward (W1))∗ 

(Pf orward (W2) ∗ Pbackward (W2))∗ 
(11) 

...∗ 

(Pf orward (Wn ) ∗ Pbackward (Wn )) 

Applying the values from Equations 9 and 10, we get: 

Pcombined (W ) =(P(w1 | < start >) ∗ P(< start > |w1))∗ 

(P(w2 |w1) ∗ P(w1 |w2))∗

(P(w3 |w2) ∗ P(w2 |w3))∗ (12) 
...∗ 

(P(< end > |wn ) ∗ (wn | < end >)) 

Finally, the network predicts and corrects potential errors com-
mitted by the language model in the following three steps. (1) 
Compare the combined probability of each word, Pcombined wn = 

P(wn |wn−1) ∗ P(wn−1 |wn ) (Equation 12), with a pre-defned thresh-
old τ1. If Pcombinedwn is less than τ1, the word is considered erro-
neous. (2) compute edit distance (ED) between an erroneous word 
wn and each dictionary word d to create a list d ′ of all dictionary 
words that have an ED less than a predefned threshold τ2. (3) Re-
place each word in d ′ with Pcombinedwn in a sentence and output 
the most frequent word sequence from the dictionary. 

We conducted an extensive study to select the best combinations 
of τ1 and τ2 by analyzing the performance of the proposed LM in 
the defned context. 

5.4 Experiment 3: Error Reduction Model 
We evaluated each sub-module of the post-processing step. First, we 
evaluated the architecture for the DDA network. Second, we eval-
uated the performance of the proposed LM. Finally, we identifed 
the best thresholds values for computing numerical similarities. 

5.4.1 Dataset. We used LIBRISPEECH LM corpus [76] to train and 
evaluate the post-processing modules. The dataset contains text 
from 14,500 public domain books. We frst fltered out all punctua-
tion, casing, and non-alphanumeric tokens from the original text 
and extracted the top 200,000 sentences as vocabulary. 

5.4.2 Training and Evaluation of Various DDA Architectures. For 
training DDA, we randomly divided the dataset into 100,000 sen-
tences as correct set and remaining 100,000 as incorrect set. We 



CHI ’21, May 8–13, 2021, Yokohama, Japan Laxmi Pandey and Ahmed Sabbir Arif 

then injected one character-level error to each word of each phrase. 
To inject errors, we simulated the following four types of error to 
each word in the following sequence: one deletion error (removal 
of one letter), one transposition error (swapping of two adjacent 
letters), one replacement error (changing one letter with another), 
and one insertion error (one additional letter). Table 2 presents the 
statistics of the dataset used for training DDA. It was divided into 
a split of 80:20% as training:testing set. 

To select the best network architecture for DDA, we trained and 
evaluated four diferent architectures (Table 3). All networks were 
implemented on the Keras deep-learning platform with TensorFlow 
[1] as the backend and an NVIDIA GeForce 1080Ti as the GPU 
board. We used Adam [63] as the optimization method for training. 
We trained the networks for 50 epochs with learning rate of 10−3, 
batch size of 128. Results revealed that the DDA architecture with 5-
layers having [128 64 32 64 128] nodes performed the best (Table 3). 
Hence, we used the DDA trained with this architecture to minimize 
potential errors in the recognized output. 

5.4.3 Training and Evaluation of N-Gram Language Model. We 
evaluated the directional advantage of a count-based n-gram LM 
with state-of-the-art bi-directional neural LM in terms of sentence 
error rate (SER)10, perplexity11, and computation time. For a fair 
comparison, we trained both models from scratch using the LIB-
RISPEECH dataset (Section 5.4.1). We divided the dataset in a split 
of 80:20% as training: testing set. Count-based n-grams models were 
trained using the Natural Language Toolkit (NLTK)12 with Kneser-
Ney smoothing [16, 45] to better estimate probabilities of unseen 
n-grams. Bi-directional neural LM (Bi-LSTM) was trained using 
LSTM based recurrent units that have two recurrent layers with 
4,096 LSTM nodes in each layer, an input projection layer of size 
128, and an output softmax layer over vocabulary. The model was 
trained end-to-end using cross-entropy loss [108] with Adam [63] 
as the optimization method. The model was trained for 60 epochs 
with batch size of 64 and learning rate of 1e−3. It was implemented 
based on the Keras deep-learning platform with TensorFlow [1] as 
the backend. Both LMs were trained and tested on NVIDIA GeForce 
1080Ti GPU. 

In the experiment, Bi-LSTM performed better than the count-
based LMs in terms of SER and perplexity (Table 4). However, it 
required extra computation time. Among count-based LMs, the 
combined trigram LM (forward and backward) performed much 
better. Besides, it yielded a 7.27% and 3.86% higher SER and perplex-
ity, respectively, and a 5.8 seconds (∼ 170.5%) lower computation 
time than Bi-LSTM. Hence, considering the negligible percentage 
diferences in SER and perplexity and a large diference in com-
putation time, we decided to use the combination of forward and 
backward trigram LM in our repair model. 

5.4.4 Selection of Best Combinations of τ1 and τ2 to Compute Nu-
merical Similarity. To select the best combinations of τ1 and τ2, we 
evaluated the proposed LM for various combinations of τ1 and τ2, 

10Sentence error rate (SER) signifes the percentage of recognized sentences that are 
not an exact match of the ground truth.
11Perplexity is the multiplicative inverse of the probability assigned to the sentence by 
the language model, normalized by the number of words in the sentence. The lower 
the perplexity the better the language model.
12Natural Language Toolkit (NLTK), https://www.nltk.org/api/nltk.lm.html 

in terms of true positive rate (TPR) and false positive rate (FPR), 
defned as: 

TP FP 
TPR = and FPR = (13)

TP + FN FP + TN 
TP : True positive is the total number of correct words identifed as 
correct. 
FP : False positive is the total number of incorrect words identifed 
as correct. 
TN : True negative is the total number of incorrect words identifed 
as incorrect. 
FN : False negative is the total number of correct words identifed 
as incorrect. 

Each curve in Fig. 6 signify TPR vs. FPR for diferent sets of τ1 
and τ2. It can be clearly seen that the LM with τ1 = 0.7, τ2 = 2 
performed best among all cases since it has a much higher TPR and 
a lower FPR. 

Figure 6: Performance comparison in terms of TPR and FPR 
of proposed LM for various values of τ1 and τ2 

To summarize, the post-processing step include: 5-layer DDA 
with bi-directional count-based trigram LM, followed by numerical 
similarity with τ1 = 0.7, τ2 = 2. 

6 EXPERIMENT 4: INDEPENDENCE OF THE 
REPAIR MODEL 

Since our goal was to develop a repair model that can be used with 
a range of speech and silent speech recognizers, we evaluated its 
efectiveness with both LipType and several other popular speech 
and silent speech recognizers. Particularly, we picked the following 
six pre-trained models. 

6.1 Silent Speech Recognizers 
(1) LipNet [9] model uses a neural network architecture for 

lip reading that maps variable-length sequences of video 
frames to text sequences, making use of deep 3-dimensional 
convolutions, a recurrent network, and the connectionist 
temporal classifcation loss [40], trained entirely end-to-end. 

https://www.nltk.org/api/nltk.lm.html
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Phrase Word Char Correct Word Correct Char Incorrect Word Incorrect Char 

200,000 6,027,754 18,527,816 2,906,117 9,279,253 3,121,637 9,248,563 

Table 2: Statistics of dataset used for training DDA. The values are the total. 

DDA Architecture WER 

Number of Layers: [ Number of Nodes] Mean (%) 
5: [256 128 64 128 256] 21.8 
5: [128 64 32 64 128] 16.4 
3: [128 64 128] 19.1 
3: [64 32 64] 26.3 

Table 3: Evaluation of various DDA architectures in terms of 
word error rate (WER). 

It was trained on the GRID dataset [27] which comprises of 
short and formulaic videos that show a well-lit person’s face 
while uttering a highly constrained vocabulary in a specifc 
order. 

(2) LipType model follows the same architecture as LipNet ex-
cept it replaces deep 3-dimensional convolutions with a com-
bination of shallow 3-dimensional convolutions (1-layer) 
and deep 2-dimensional convolutions (34-layer ResNet) inte-
grated with squeeze and excitation (SE) blocks (SE-ResNet). 
It was also trained on the GRID dataset. 

(3) Transformer [3] model comprises of two sub-modules: a 
spatio-temporal visual frontend that takes a sequence of video 
frames to extract one feature vector per frame and a sequence 
processing backend comprised of encoder-decoder structure 
with multi-head attention layers [100] that generates char-
acter probabilities over the vocabulary. It was trained on 
Lip Reading in the Wild (LRW) [22] and the Lip Reading 
Sentences 2 (LRS2) [3] datasets. 

6.2 Speech Recognizers 
(1) DeepSpeech [43] is a speech recognition model developed 

using end-to-end training of a large recurrent neural net-
work (RNN). It converts an input speech spectrograms into 
a sequence of character probabilities. It was trained on the 
Wall Street Journal (WSJ) [78], Switchboard [39], and Fisher 
[24] datasets. 

(2) Kaldi [85] is an open-source toolkit for speech recognition 
written in C++, which uses Finite State Transducer (Open-
FST) library [87] for training recognition models. It com-
prises of multiple speech recognition recipes. For our work, 
We used a pre-trained chain English model (Api.ai) recipe, 
trained on the LIBRISPEECH dataset [76]. 

(3) Wave2Letter [26] is an end-to-end model for speech recog-
nition, that combines a convolutional network-based acous-
tic model and a graph decoding. It is trained to output letters 
without the need for force aligning them. It was trained on 
the LIBRISPEECH [76] dataset. 

We evaluated these models on seen and unseen data. For seen 
data, we randomly selected 30 phrases from each model’s training 
dataset, for unseen data, we randomly selected 30 phrases from 
MacKenzie and Soukoref dataset [71]. Unseen data was common 
for all models. All selected phrases are listed in the Appendix A. 

6.3 Experimental Conditions 
We evaluated the silent speech models under three lighting condi-
tions. Due to the spread of COVID-19, all conditions were simulated 
in a private room without any artifcial light sources. 

• Dark light: video recorded during nighttime (9:00–11:00 
PM). 

• Dusky light: video recorded during evening time (6:00–8:00 
PM). 

• Daylight: video recorded during daytime (1:00–3:00 PM). 
Likewise, speech models were evaluated under three noisy condi-
tions, simulated in a private room. 

• Indoor noise: audio recording with an indoor noise, sim-
ulated by playing a prerecorded CNN news report in the 
background. 

• Outdoor noise: audio recording in a public place, simulated 
by playing a prerecorded busy marketplace noise. 

• Quiet: audio recording in a quiet room. 

6.4 Apparatus 
We developed a custom Android application with Android Studio 
3.1.4 for data collection. The application included a landing page 
and a data collection page. The landing page included a drop-down 
menu to select recording conditions and a Start button to start a 
session. The data collection page included a video viewer to dis-
play the device’s front camera, an area to presented phrases, and a 
Record/Stop toggle button to start and stop recording. The applica-
tion recorded all videos and automatically logged the duration of a 
session, device specifcation (display and camera resolution, etc.), 
light intensity, and sound level. 

6.5 Participants 
Twelve volunteers aged 19—54 years (M = 27.9, SD = 9.15) took 
part in the study (Fig. 7). They were all profcient in the English 
language. Five of them identifed themselves as women and seven 
identifed as men. They all had at least fve years of experience with 
smartphones. All of them were Android-based smartphone users, 
and users of a voice assistant system for at least one year. Most 
of them had experience with multiple voice assistants, including 
Amazon Alexa, Google Assistant, and Apple Siri. They all received 
US $20 for participating in the study. 

6.6 Design 
We used the following within-subjects design for the study: 
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Sentence Error Rate (SER) % 
Bigram Trigram Bi-LSTM 

Forward Backward Combined Forward Backward Combined 
27.4 30.9 26.7 24.4 27.6 16.5 15.3 

Perplexity 
Bigram Trigram Bi-LSTM 

Forward Backward Combined Forward Backward Combined 
51.3 60.1 48.7 44.1 48.3 41.4 39.8 

Computation Time (Second) 
Bigram Trigram Bi-LSTM 

Forward Backward Combined Forward Backward Combined 
1.8 1.7 3.1 1.5 1.9 3.4 9.2 

Table 4: Comparison between forward, backward and combination of both (forward + backward) n-gram LM with Bi-LSTM 
LM. Reported sentence error rate (SER), perplexity, and computation time are average of all values. The proposed repair model 
uses the combined trigram model. 

Dark Light Dusky Light Day Light User with Custom Application

Figure 7: Four volunteers participating in the user study. 

12 participants × 
2 methods (speech, silent speech) × 
3 conditions (indoor, outdoor, quiet / dark, dusky, day), coun-
terbalanced × 
2 data types (seen, unseen) × 
3 models (DeepSpeech, Kaldi, Wave2Letter / LipNet, LipType, 
Transformer), counterbalanced × 
30 phrases = 12,960 phrases in total. 

6.7 Procedure 
The study was conducted remotely due to the spread of COVID-19. 
We explained the purpose of the study and scheduled individual 
Zoom13 video calls with each participant ahead of time. We in-
structed them to join the call from a quiet room to avoid any in-
terruptions during the study. In the frst call, we demonstrated the 
application and collected their consents and demographics using 
electronic forms. We then shared the application (APK fle) with 
them and guided them through the installation process on their 
smartphones. The frst session started shortly after that. The ap-
plication displayed one phrase at a time. Participants pressed the 
Record button, spoke or silently spoke14 the phrase, then pressed 

13Zoom, https://zoom.us 
14Uttering phrases without vocalizing any sound 

the Stop button to see the next phrase. In the noisy conditions (Sec-
tion 6.3), we shared the respective audio clips with the participants 
and instructed them to play the clips slightly louder than a normal 
conversation. Log analysis reveled that, on average, participants 
played the indoor noise at 48.75 db (min = 42 db, max = 58 db) and 
outdoor noise at 55.25 db (min = 49 db, max = 66 db). To simulate 
diferent lighting conditions, silent speech sessions were scheduled 
at diferent times of the day. Log analysis revealed that, on average, 
room light intensity was 0.93 lux (min = 0 lux, max = 2 lux) in the 
dark light condition, 7.86 lux (min = 6 lux, max = 11 lux) in the 
dusky light condition, and 58.0 lux (min = 52 lux, max = 61 lux) 
in the daylight condition. All sessions followed the same format, 
expect for demonstration and installation. Upon completion of each 
session, participants shared the logged data with us by uploading 
those to a cloud storage under our supervision. In total, there were 
24 recording sessions (Table 5). A researcher monitored all sessions 
via Zoom. 

Upon completion of the study, we evaluated the repair model 
with the six recognition models using the collected audio and video 
clips. For speech, frst, we passed the recorded audio to a speech 
recognizer, then we post-processed the output to auto-correct errors. 
We did not pre-process the data since speech only utilizes audio 
information, thus, is not afected by poor lighting conditions. For 

https://zoom.us
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Speech 

Session Condition Model Dataset 
1 Indoor DeepSpeech Fisher [24] (seen) 
2 Outdoor DeepSpeech Fisher [24] (seen) 
3 Quiet DeepSpeech Fisher [24] (seen) 
4 Indoor Kaldi LIBRISPEECH [76] (seen) 
5 Outdoor Kaldi LIBRISPEECH [76] (seen) 
6 Quiet Kaldi LIBRISPEECH [76] (seen) 
7 Indoor Wave2Letter LIBRISPEECH [76] (seen) 
8 Outdoor Wave2Letter LIBRISPEECH [76] (seen) 
9 Quiet Wave2Letter LIBRISPEECH [76] (seen) 
10 Indoor DeepSpeech/Kaldi/Wave2Letter Mackenzie and Soukoref [71] (unseen) 
11 Outdoor DeepSpeech/Kaldi/Wave2Letter Mackenzie and Soukoref [71] (unseen) 
12 Quiet DeepSpeech/Kaldi/Wave2Letter Mackenzie and Soukoref [71] (unseen) 

Silent Speech 
13 Dark LipNet Grid [27] (seen) 
14 Dusky LipNet Grid [27] (seen) 
15 Day LipNet Grid [27] (seen) 
16 Dark LipType Grid [27] (seen) 
17 Dusky LipType Grid [27] (seen) 
18 Day LipType Grid [27] (seen) 
19 Dark Transformer LRS [3] (seen) 
20 Dusky Transformer LRS [3] (seen) 
21 Day Transformer LRS [3] (seen) 
22 Dark LipNet/Transformer/LipType Mackenzie and Soukoref [71] (unseen) 
23 Dusky LipNet/Transformer/LipType Mackenzie and Soukoref [71] (unseen) 
24 Day LipNet/Transformer/LipType Mackenzie and Soukoref [71] (unseen) 

Table 5: Recording sessions for diferent noisy and lighting conditions with their corresponding recognition models and 
datasets. 

silent speech, frst, we processed each recorded video with the pre-
processing technique to enhance the lighting of the clips, then we 
passed the processed videos to a silent speech recognizer, fnally 
we post-processed the output to auto-correct errors. 

6.8 Results 
For evaluation, we considered all pre-trained models as baselines 
and compared with their respective repaired versions in terms of 
WER, WPM, and CT. To ensure a fair comparison of computation 
time, we evaluated all models on NVIDIA GeForce 1080Ti GPU 
board. Results revealed that the proposed repair model signifcantly 
reduce error rates of all pre-trained models regardless of data type 
and experimental conditions. 

Fig. 8 shows the efectiveness of repair model on the three exam-
ined speech recognition models. It can be clearly observed that the 
repair model resulted in substantial reductions in error rates for all 
pre-trained models under all noisy conditions. With DeepSpeech, it 
showed 37.5% reduction in WER for seen data and 26.7% reduction 
for unseen data. With Kaldi, it showed 31.5% reduction in WER for 
seen data and 38% reduction for unseen data. With Wave2Letter, it 
showed 26.8% reduction in WER for seen data and 38.3% reduction 
for unseen data. On average, for all models, we observed 8.4% re-
duction in WPM and 5.9 seconds increase in CT on both seen and 

unseen data. Overall, Repaired Kaldi performed the best among all 
pre-trained models. 

Fig. 9 shows the efectiveness of the repair model on silent speech 
recognition models. The performance of the repair model followed a 
similar trend as the speech models. It showed substantial reductions 
in error rates for all lighting conditions. With LipNet, it showed 
58.1% reduction in WER for seen data and 15.5% reduction for un-
seen data. With LipType, it showed 61.9% reduction in WER for 
seen data and 16.3% reduction for unseen data. With Transformer, it 
showed 51.5% reduction in WER for seen data and 38.5% reduction 
for unseen data. On average, for all models, we observed 10.9% 
reduction in WPM and 8 seconds increase in CT on both seen and 
unseen data. For unseen data, we observed a negligible reduction in 
WER for LipNet and LipType compared to the Transformer model. 
We speculate that this is because LipNet and LipType are trained on 
a relatively small GRID dataset [27] that has a smaller number of 
word-level classes (shorter phrases). This resulted in a much better 
performance for their repair models with seen data as most of the 
silently spoken words were in its vocabulary. Likewise, it did not 
perform as well with unseen data as many of the silently spoken 
words were not in its vocabulary (thus could not be fully processed 
by the language model). Transformer, in contrast, is trained on LRS 
dataset [3] that has a larger number of word-level classes (longer 
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Seen Unseen
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                                                          (e)                                                                                                                                                                          (f)                                                                                                                                                        

Figure 8: Performance evaluation of the three investigated speech recognition models without/with the proposed repair model 
in terms of a) WER-Seen, b) WER-Unseen, c) WPM-Seen, d) WPM-Unseen, e) CT-Seen, and f) CT-Unseen. Each condition has 
360 data points. Reported values are the average of all values. The values inside the brackets are standard deviations (SD). Error 
bars represent ±1 SD. 

phrases). This resulted in a much lower WER for repaired Trans-
former with unseen data as it provided the language model with 
more accurate words than LipType. Note that the language model is 
part of the repair model not the recognizer. It is trained on a more 
comprehensive LIBRISPEECH dataset [76]. But its efectiveness is 
reliant on the vocabulary of the recognizer. 

We also performed extensive ablation studies on each submod-
ule of our model to demonstrate their contribution to the overall 
performance gains. All results are detailed in Appendix B. 

7 DISCUSSION 
We developed LipType, an optimized version of LipNet for im-
proved speed and accuracy. LipType demonstrated a signifcant 
improvement in the performance of LipNet. Results revealed 46.9% 
reduction in WER, 39.1% increase in WPM, and 8.6 seconds reduc-
tion in CT. We then developed an independent repair model that 
processes video input for poor lighting conditions and corrects 
potential errors in output for increased accuracy. We evaluated 
the repair model’s efectiveness with various speech and silent 
speech recognizers. To demonstrate its beneft, we selected six pre-
trained models, i.e., three for speech and three for silent speech. 
We then conducted a user study with twelve participants to collect 

diverse data under real-world conditions. For speech models, we 
collected data in indoor, outdoor, and quiet noisy conditions. For 
silent speech, we collected data in dark, dusky, and day lighting 
conditions. We then evaluated the impact of the repair model on 
each model’s performance using the collected data. Results showed 
signifcant improvement in the performance of all models. Mod-
els augmented with the repair model outperformed the original 
models drastically for all experimental conditions. For speech, we 
observed 32% reduction in WER, 5.8 seconds increase in CT, and 
8.1% reduction in WPM; whereas for silent speech, we observed 
57.2% reduction in WER, 7.9 seconds increase in CT, and 10.3% 
reduction in WPM. Since speech models do not involve preprocess-
ing, their repaired models showed 26.2% less CT than silent speech 
models. 

On comparing the performance of LipNet and LipType from Fig. 
3 and Fig. 9(a):Day, we observed a 45-50% reduction in their WER. 
We speculate that this is because the dataset used to evaluate both 
models for seen speakers comprises of uniform visual attributes 
(same skin tone, accent, pace of speech, etc.) (Fig. 3). However, the 
dataset for fnal evaluation used new speakers’ data that solicited 
more variability in terms of speaker characteristics (Fig. 9(a):Day). 
We also observed that the repaired Transformer performed much 
better than the other silent speech models on unseen data. We 



LipType Silent Speech Recognizer CHI ’21, May 8–13, 2021, Yokohama, Japan 

                                                          (a)                                                                                                                                                                          (b)                                                                                                                                                        

Seen Unseen

                                                          (c)                                                                                                                                                                          (d)                                                                                                                                                        
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Figure 9: Performance evaluation of the three examined silent speech recognition models without/with the proposed repair 
model in terms of a) WER-Seen, b) WER-Unseen, c) WPM-Seen, d) WPM-Unseen, e) CT-Seen, and f) CT-Unseen. Each condition 
has 360 data points. Reported values are the average of all values. The values inside the brackets are standard deviations (SD). 
Error bars represent ±1 SD. 

speculate that this is because Transformer is trained on LRS dataset 
that has a larger number of word-level classes (longer phrases). 
This resulted in a much lower WER for repaired Transformer with 
unseen data as it provided the language model with more accurate 
words than LipType. 

Overall, empirical results exhibit the efectiveness of repair model 
on all recognition models for improving accuracy with a slight 
increase in CT. These fndings show the potential of the developed 
framework as a medium for communication with various computer 
systems, incorporated in day-to-day usage. This approach could 
also enable people with speech disorder, muteness, and blindness to 
input and interact with computer systems, increasing their access 
to technologies. We also envision the potential of this framework 
on other platforms like head-mounted displays (HMDs) and smart 
eyewear. 

8 CONCLUSION 
We developed LipType, an optimized version of LipNet for im-
proved speed and accuracy. We then developed an independent 
repair model that compensates for poor lighting conditions and 
corrects potential errors in output using a custom language model. 
We evaluated the repair model’s efectiveness with both LipType 
and other speech and silent speech recognizers. Empirical results 

showed that it signifcantly reduces error rates for all recognizers. 
The fndings confrm that the model can be used independently 
with a range of recognizers. In the future, we will extend this work 
to further optimize the algorithm to make it faster and adapt it for 
people with various speech disorders. 
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A TEST DATASET: PRETRAINED MODEL 
In this appendix, we provide details about the selected phrases 
for seen and unseen data. For seen data, we randomly selected 
30 phrases from each pretrained models’ training dataset. For un-
seen data, we randomly selected 30 phrases from MacKenzie and 
Soukoref [71] dataset, which is common for all models. 

A.1 LipNet: Seen data (Grid data [27]) 
(1) bin blue at c one again 
(2) set blue in f four soon 
(3) set blue with l eight now 
(4) bin green by a four soon 
(5) place blue by t nine soon 
(6) place red with a four please 
(7) place green by p fve again 
(8) lay red with k seven soon 
(9) set blue in g four now 
(10) set red with m zero soon 
(11) bin white at q six soon 
(12) place blue at n six now 
(13) bin white with f seven soon 
(14) place blue at m seven now 
(15) bin red by j fve please 
(16) bin white at a one please 
(17) set red by b one now 
(18) place blue at i one soon 
(19) place blue in n two please 
(20) lay red by d seven please 
(21) bin white by z three now 
(22) place white with e three again 
(23) bin red in j four now 
(24) set blue in e four again 
(25) lay green at p four again 
(26) bin red with z eight please 
(27) place red with n two please 
(28) lay blue with b two please 
(29) set green with v eight now 
(30) bin white at j nine now 

A.2 LipType: Seen data (Grid data [27]) 
(1) set green at f four soon 
(2) bin green by h zero please 
(3) bin white at f zero again 
(4) place blue with j fve again 
(5) place white in g two please 
(6) bin white by d eight again 
(7) bin blue in q seven please 
(8) lay red with f zero again 
(9) place white at p eight now 
(10) lay red with k three now 
(11) lay red in j one soon 
(12) lay white at j nine soon 
(13) lay red at v eight again 
(14) place green in u zero now 
(15) lay red with c eight again 
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(16) place green at u two now 
(17) place white by v four now 
(18) bin red in x one now 
(19) bin green at e zero again 
(20) lay white by p six please 
(21) bin red with x nine again 
(22) place red at c three now 
(23) set green at o seven please 
(24) bin red at s eight again 
(25) place red in s three please 
(26) bin green by n four again 
(27) place green by y two please 
(28) place green by k one please 
(29) lay blue at c one please 
(30) place red by n one please 

A.3 Transformer: Seen data (LRS data [3]) 
(1) the whole gardens are extraordinary and 
(2) like hundreds of thousands of people do every year 
(3) but now there is more protection 
(4) we have a lot less atmosphere above us 
(5) and a couple of weeks ago 
(6) enjoy the summer 
(7) are they relatives of yours 
(8) no longer dependent on the sun 
(9) but the waldorf astoria 
(10) they would be able to go back 
(11) not just a hotel 
(12) not just in this town 
(13) every september this place would be transformed into what 
(14) now they are gathering 
(15) so from his vantage point 
(16) there is no air so there is no sound 
(17) with one of the rooms upstairs 
(18) maybe more of steel and iron 
(19) we have run out of time 
(20) before we all get too excited about that prospect 
(21) it can be quite expensive 
(22) in the form of a dessert plate 
(23) on the face of it 
(24) it could be your passport to a small fortune 
(25) some issues with potential damp 
(26) a great place for him to be 
(27) we have to pay for that 
(28) so rather than just relying on this information 
(29) all of the brain is combining all the diferent senses 
(30) he ordered them back inside 

A.4 DeepSpeech: Seen data (Fisher 
English-conversational [24]) 

(1) can you hear me okay by the way 
(2) oh good as long as you can hear me 
(3) yeah i can hear you 
(4) yeah that would be interesting 
(5) like ten minutes with a head set on i might as well exercise 
(6) yeah thats great
(7) listening to the music anyway so um 

(8) i actually think its actually going out 
(9) ffth wheel dating show 
(10) i also watch that show the ffth wheel third and fourth wheel 
(11) and i have seen i remember when survivor frst started 
(12) i saw that like a couple things 
(13) cause my roommate where watching it 
(14) yeah my roommates are you in college too 
(15) i am in graduate school 
(16) oh yeah okay i just graduated from um 
(17) frst time graduate last year 
(18) and how about what school are you in 
(19) that was great performance tonight 
(20) it would be it would be cool to be on it 
(21) thats very cool 
(22) popular everyone talks about it 
(23) somebody from my high school one something too 
(24) he won he was like on that 
(25) greatest bachelor show 
(26) it was before these millionaire the millionaire guy ones 
(27) it was like a pageant for men 
(28) i didnt see it but i think i know what you were talking about 
(29) yeah he was in my old high school 
(30) going to rat on the other one 

A.5 Kaldi: Seen data (LIBRISPEECH 
audiobooks [76]) 

(1) he was in a mood for music was he not 
(2) give not so earnest a mind to these mummeries child 
(3) a golden fortune and a happy life 
(4) he was like my father in a way and yet was not my father 
(5) also there was a stripling page who turned into a maid 
(6) this was so sweet a lady sir and in some manner i do think 
(7) but then the picture was gone as quickly as it came 
(8) sister nell do you hear these marvels 
(9) take your place and let us see what the crystal can show you 
(10) like as not young master though i am an old man 
(11) he was going home after victory 
(12) it was almost buried now in fowers and foliage 
(13) But I wrestled with this fellow 
(14) but he saw nothing that moved no signal lights twinkled 
(15) and why should that disturb me let him enter 
(16) there was not a single note of gloom 
(17) boats put out both from the fort and the shore 
(18) his excellency madam the prefect 
(19) so i did push this fellow 
(20) what do i care for food 
(21) shame on you citizens cried he i blush for my fellows 
(22) surely we can submit with good grace 
(23) fne for you to talk old man answered the lean 
(24) at the same time every avenue of the throne was assaulted 
(25) vintage years have much to do with the quality of wines 
(26) come to me men here here he raised his voice still louder 
(27) dry and of magnifcent bouquet 
(28) pour mayonnaise over all chill and serve 
(29) set into a cold place to chill and become frm 
(30) when thickened strain and cool 
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A.6 Wave2Letter: Seen data (LIBRISPEECH 
audiobooks [76]) 

(1) last two days of the voyage bartley found almost intolerable 
(2) i never dreamed it would be you bartley 
(3) the cuisine is the best and the chefs rank at the top of the art 
(4) he pulled up a window as if the air were heavy 
(5) it it hasnt always made you miserable has it 
(6) always but its worse now 
(7) it’s unbearable it tortures me every minute 
(8) i get nothing but misery out of either 
(9) there is this deception between me and everything 
(10) he dropped back heavily into his chair by the fre 
(11) i have thought about it until i am worn out 
(12) after the very frst 
(13) we never planned to meet and when we met 
(14) i dont know what becomes of the ladies 
(15) but now it doesnt seem to matter very much 
(16) presently it stole back to his coat sleeve 
(17) yes hilda i know that he said simply 
(18) i understand bartley i was wrong 
(19) season with salt and pepper and a little sugar to taste 
(20) you want me to say it she whispered 
(21) what alternative was there for her 
(22) its got to be a clean break hilda 
(23) oh bartley what am i to do 
(24) you ask me to stay away from you because you want me 
(25) i will ask the least imaginable but i must have something 
(26) you see the treatment is a trife fanciful 
(27) he protected her and she strengthened him 
(28) and then you came back not caring very much 
(29) dont cry dont cry he whispered 
(30) a little attack of nerves possibly 

A.7 Common unseen data (MacKenzie and 
Soukoref dataset [71]) 

(1) my watch fell in the water 
(2) prevailing wind from the east 
(3) never too rich and never too thin 
(4) breathing is difcult 
(5) I can see the rings on Saturn 
(6) physics and chemistry are hard 
(7) my bank account is overdrawn 
(8) elections bring out the best 
(9) you are a wonderful example 
(10) do not squander your time 
(11) do not drink too much 
(12) take a cofee break 
(13) popularity is desired by all 
(14) the music is better than it sounds 
(15) I agree with you 
(16) do not say anything 
(17) play it again Sam 
(18) the force is with you 
(19) we went grocery shopping 
(20) the assignment is due today 
(21) what you see is what you get 

(22) for your information only 
(23) a quarter of a century 
(24) the store will close at ten 
(25) head shoulders knees and toes 
(26) always cover all the bases 
(27) this is a very good idea 
(28) can we play cards tonight 
(29) get rid of that immediately 
(30) public transit is much faster 

B ABLATION STUDIES 
In this appendix, we present the results of various ablation studies 
performed to demonstrate the contribution of each submodule of 
our model to the overall performance gains. 

B.1 With only Pre-processing 
The purpose of this study was to analyze the efects of pre-
processing on silent speech recognition model’s performance in 
terms of WER, WPM, CT. For evaluation, we considered all pre-
trained models as baselines and compared with their conjunc-
tion with pre-processing. Results revealed that the proposed pre-
processing module substantially reduced the error rates of all pre-
trained models (Table 6). In the study, pre-processing with LipNet 
showed 15% reduction in WER with seen and 7% reduction with 
unseen data. With LipType, it showed 12% reduction in WER with 
seen and 5.5% reduction with unseen data. With Transformer, it 
showed 24% reduction in WER with seen and 8% reduction with 
unseen data. On average, for all models, there were 5% reduction 
in WPM and 2 sec. increase in CT with both seen and unseen data. 
Note that the performance of these models with pre-processing and 
post-processing (repaired) are shown in Fig. 9. 

B.2 Efects of Individual Error Correction 
Module 

We also analyzed the efects of individual error correction modules 
with the LipType model in terms of WER and CT. All the presented 
results are calculated with seen data. Results demonstrated that 
each submodule made a signifcant contribution to the overall per-
formance improvement of the repair model (Table 7). 

B.3 Correction Classifcation 
In this study, we analyzed the types of correction made by the 
post-processing module. For this, we classifed all errors by the 
following criteria: 

• Whether the correct word is substituted with other word(s), 
substitution error. 

• Whether the new word(s) is inserted, insertion error. 
• Whether the correct word(s) is deleted, deletion error. 

After analysis, we observed that Silent Speech has 2% insertion, 
27% deletion, 71% substitution, (34% of these were on short words 
<= 3 chars, 11% of these were on long words > 3 chars, 29% of 
these were in starting of the phrase <= length(phrase)/2-1, 14% of 
these were in ending of the phrase > length(phrase)/2). However, 
speech has 38% insertion, 21% deletion, 41% substitution (12% of 
these were on short words <= 3 chars, 18% of these were on long 
words > 3 chars, 25% of these were in starting of the phrase <= 
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Model Seen Unseen 
WER WPM CT WER WPM CT 

LipNet 49.4 4.9 14.3 96.5 4.8 14.1 
PP + LipNet 42.0 4.8 16.4 89.5 4.6 15.9 
LipType 45.9 6.5 6.0 94.1 6.2 6.2 

PP + LipType 40.9 5.6 8.5 88.9 6.0 8.1 
Transformer 56.2 6.0 14.9 82.4 5.9 14.5 

PP + Transfomer 42.5 5.9 16.4 76.0 5.6 15.8 

Table 6: Performance evaluation of the three examined silent speech recognition models without/with the Pre-processing (PP) 
module in terms of WER, WPM, and CT for seen and unseen data. 

Method WER CT 

LipType 45.9 6.0 
PP + LipType 40.9 8.3 

PP + LipType + DDA 29.7 11.1 
PP + LipType + DDA + SC 27.5 11.7 

PP + LipType + DDA + SC + LM 24.1 14.2 
PP + LipType + DDA + SC + LM + ED 20.5 15.1 

Table 7: Efect of individual error correction module on LipType’s WER and CT with seen data (Pre-processing: PP; DDA: Deep 
denoising autoencoder; SC: Spell Checker; LM: Language Model; ED: Edit Distance). We considered DDA + SC + LM + ED as the 
post-processing module. 

length(phrase)/2-1, 11% of these were in ending of the phrase > silent speech recognition just uses visual information for recogni-
length(phrase)/2). tion which does not get afected by background noise. Besides, silent 

Silent speech has 94.7% fewer insertion errors than speech. We speech has 73.1% more substitution errors. We hypothesize that this 
speculate that this is because, for speech input, the recognition is because it is more difcult to distinguish between homophones 
model captures background noises and recognizes them as words with just visual information due to ambiguity in lip movements, 
which resulted in more insertion errors. Unlike speech recognition, i.e., diferent characters that produce exactly the same lip sequence 

(e.g. ‘p’ and ‘b’). This may have resulted in more substituted words. 
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