
Silent Speech and Emotion Recognition from Vocal Tract Shape
Dynamics in Real-Time MRI

Laxmi Pandey
University of California, Merced
Merced, California, United States

lpandey@ucmerced.edu

Ahmed Sabbir Arif
University of California, Merced
Merced, California, United States

asarif@ucmerced.edu

rtMRI Video Spatio-temporal Convolution (STCNN) Bidirectional-GRU Linear Layer Softmax

          ...      y     z

Beam Search Decoding  + Character-level LM

- a      b    ...      

Recognized Text

this was easy for us

h      i     ...    s      t

Figure 1: Themodel classifies 2D real-timeMRI (rtMRI) of vocal tract shaping into textwith an end-to-end deepneural network.
A sequence of input frames is processed by 3 layers of STCNN to extract spatiotemporal features, which are processed by 2
Bi-GRUs, and a linear and a softmax layer. Then, the output is decoded with prefix beam search with a language model.

ABSTRACT
We propose a novel deep neural network-based learning frame-
work that understands acoustic information in the variable-length
sequence of vocal tract shaping during speech production, captured
by real-time magnetic resonance imaging (rtMRI), and translate it
into text. In an experiment, it achieved a 40.6% PER at sentence-level,
much better compared to the existing models. We also performed
an analysis of variations in the geometry of articulation in each
sub-regions of the vocal tract with respect to different emotions
and genders. Results suggest that each sub-regions distortion is
affected by both emotion and gender.
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1 INTRODUCTION
Speech sounds of spoken language are obtained by varying con-
figuration of the vocal tract articulators. They contain abundant
information that can be used to better understand the underlying
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mechanism of speech production. We propose a model that maps
a variable-length sequence of rtMRI video frames to text using
spatiotemporal convolutions, a recurrent network, and the connec-
tionist temporal classification loss, which we believe is the first end-
to-end sentence-level articulatory speech recognition model1. We
also performed an analysis on theMR images of emotion-dependent
vocal tract movements to compare different emotions and genders
using an existing dataset [Kim and et al. 2014]. An understanding
of how emotion affects articulatory movements during speech pro-
duction can reduce emotional ambiguity in recognized sentences
(e.g., “I hate you” could be said said either sarcastically or literally).
The effects of gender on vocal tract movements, in contrast, can
increase the accuracy of the recognition system.

2 RECOGNITION MODEL
The aim of the proposedmodel is to predict the spoken phrases from
silent videos of vocal tract movements during speech production
(Fig. 1). It consists of 2 sub-modules: a feature extraction frontend
that takes a sequence of video frames to output one feature vector
per frame using 3 layers of spatiotemporal convolutions (STCNN),
and a sequence modeling module that inputs the sequence of per-
frame feature vectors to process them by 2-Bidirectional Gated
Recurrent Units (Bi-GRUs), where each time-step of the output is
processed by a linear layer, followed by a softmax layer over the
vocabulary. Then, an end-to-endmodel is trainedwith connectionist
temporal classification (CTC) loss and the softmax output is decoded
with a left-to-right beam search using Stanford-CTC’s decoder and
5-gram character language model to recognize the spoken phrases.

3 PERFORMANCE EVALUATION
To validate the model’s performance, we performed an articulatory
speech recognition experiment on the Narayanan and et al. [2014]
dataset that includes 2D rtMRI of vocal tract shaping of 10 speakers
and their time-aligned word-level transcriptions. We divided the
data into a training set with 3,680 videos of 8 speakers and a testing
1An extended version of this work is available here: http://arxiv.org/abs/2106.08706

https://doi.org/10.1145/3450618.3469176
https://doi.org/10.1145/3450618.3469176
http://arxiv.org/abs/2106.08706


SIGGRAPH ’21 Posters, August 09-13, 2021, Virtual Event, USA Laxmi Pandey and Ahmed Sabbir Arif

                         p                      l                      e                     a                     s                      d                      r                     e                                                 p                     l                       e                     a                      s                      u                     r                    e                      

Figure 2: Saliency maps for the word “pleasure”: female (left) and male (right) speakers with corresponding phoneme predic-
tions at the bottom. Red labels indicate incorrect predictions. Yellow shades indicate high sensitivity, that is, small changes in
these pixels in the input have a large effect on the predicted class.

Table 1: Average Neutral EmotionDeviationMeasure (NEDM) indicating the relationship between each subregion and emotion
across gender (M, F) for lower and upper boundaries (respectively) of vocal tract.

Word Emotion Pharyngeal Velar & dorsal constriction Hard palate Labial constriction

Clock
Happy M: 0.67, 0.42 | F: 0.71, 0.44 M: 0.78, 0.56 | F: 0.80, 0.48 M: 0.84, 0.34 | F: 0.93, 0.53 M: 0.62, 0.48 | F: 0.64, 0.49
Angry M: 0.85, 0.37 | F: 0.89, 0.61 M: 0.91, 0.44 | F: 1.00, 0.54 M: 0.72, 0.48 | F: 0.86, 0.47 M: 0.73, 0.45 | F: 0.74, 0.41
Sad M: 0.36, 0.30 | F: 0.41, 0.33 M: 0.48, 0.41 | F: 0.54, 0.42 M: 0.41, 0.33 | F: 0.49, 0.49 M: 0.50, 0.35 | F: 0.53, 0.39

Dock
Happy M: 0.68, 0.40 | F: 0.75, 0.48 M: 0.74, 0.43 | F: 0.80, 0.49 M: 0.83, 0.39 | F: 0.94, 0.41 M: 0.62, 0.45 | F: 0.61, 0.38
Angry M: 0.83, 0.37 | F: 0.91, 0.57 M: 0.94, 0.54 | F: 0.98, 0.52 M: 0.70, 0.59 | F: 0.87, 0.44 M: 0.72, 0.45 | F: 0.69, 0.39
Sad M: 0.32, 0.31 | F: 0.43, 0.36 M: 0.43, 0.44 | F: 0.50, 0.48 M: 0.38, 0.32 | F: 0.49, 0.40 M: 0.53, 0.28 | F: 0.48, 0.34

set with the remaining 920 videos of 2 speakers. For training, we
augmented the data by applying a horizontally mirrored transfor-
mation on the video frames, resulting in 10,972 samples. The model
was trained end-to-end by Adam optimizer with a batch size of 32.

Our model yielded 40.6% PER compared to 58% and 57% PER of
existing models that consider only the simpler case of predicting
vowel-consonant-vowel (VCV) [Saha and et al. 2018] and phoneme
from static MR images using a deep neural network [van Leeuwen
and et al. 2019], respectively. Fig. 2 illustrates two saliency visu-
alisations for the word “pleasure” for female and male speakers.
The saliency maps show that the model has learned to focus on
the parts of the input frames that represent the crucial articulatory
positions needed to distinguish between different phonemes. Most
phonemes show a more widespread field between the tongue and
palate. The saliency maps for female and male speakers are differ-
ent as the vocal tract configurations varies from person to person.
The phoneme u was incorrectly predicted as d (highlighted in red)
when the model payed attention to parts that are not crucial in
distinguish between the two (see the saliency maps).

Figure 3: Segmentation of lower and upper boundary of vo-
cal tract in four sub-regions.

4 EMOTION AND GENDER ANALYSIS
We compared vocal tract shaping of different emotions by measur-
ing the distortion in the shaping of each sub-region (r ) for each
emotion (e) relative to neutral emotion (n) (Fig. 3). This is done by

the normalized sum of differences of the cross-distances in the 2D
space from the centroid region (mean of all the points on vocal tract
airway-tissue boundaries) to each respective landmark (number of
points on vocal tract airway-tissue boundaries). The cross-distances
are individually computed for lower and upper boundary of each
sub-region. For this, we developed a new Neutral Emotion Devi-
ation Measure (NEDM): NEDMb

r =
∑
l
|dnl −del |

dnl
, where b: lower

and upper boundaries, l : number of landmarks in each sub-region,
and d : Euclidean distance between centroid and the landmarks.

We examined 2 words (clock, dock) × 3 emotions (happy, angry,
sad) × 56 productions from the Kim and et al. [2014] dataset. Table 1
shows the most affected regions in vocal tract airway-tissue upper
and lower boundaries for all emotions. On average, the sub-regions
of lower boundary showed a greater deviation from centroid lo-
cation than upper boundary for all emotions. The velar & dorsal
constriction and the hard palate regions showed more distortion
for high arousal emotions (anger, happiness) than low arousal (sad-
ness). The velar & dorsal constriction region was important for all
emotions. The palatal constriction and releasing were more empha-
sized for happiness than anger. The distortion factor was affected
by gender. For all emotions, female speakers had more noticeable
changes in all regions. Labial constriction region showed a small
variation across gender. For anger, female speakers had more geo-
metrical distortion in pharyngeal and velar & dorsal constriction
regions than happiness.
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