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Figure 1: SwipeRing arranges the standard QWERTY layout around the edge of a smartwatch in seven zones. To enter a word, the
user connects the zones containing the target letters by drawing gestures on the screen, like gesture typing on a virtual QWERTY.
A statistical decoder interprets the input and enters the most probable word. A suggestion bar appears to display other possible
words. The user could stroke right or left on the suggestion bar to see additional suggestions. Tapping on a suggestion replaces the
last entered word. One-letter and out-of-vocabulary words are entered by repeated strokes from/to the zones containing the target
letters, in which case the keyboard first enters the two one-letter words in the English language (see the second last image from
the left), then the other letters in the sequence in which they appear in the zones (like multi-tap). Users could also repeatedly tap
(instead of stroke) on the zones to enter the letters. The keyboard highlights the zones when the finger enters them and traces all
finger movements. This figure illustrates the process of entering the phrase “the world is a stage” on the SwipeRing keyboard (upper
sequence) and on a smartphone keyboard (bottom sequence). We can clearly see the resemblance of the gestures.

ABSTRACT

Most text entry techniques for smartwatches require repeated taps to
enter one word, occupy most of the screen, or use layouts that are
difficult to learn. Users are usually reluctant to use these techniques
since the skills acquired in learning cannot be transferred to other
devices. SwipeRing is a novel keyboard that arranges the QWERTY
layout around the bezel of a smartwatch divided into seven zones to
enable gesture typing. These zones are optimized for usability and
to maintain similarities between the gestures drawn on a smartwatch
and a virtual QWERTY to facilitate skill transfer. Its ring-shaped
layout keeps most of the screen available. We compared SwipeRing
with C-QWERTY that uses a similar layout but does not divide the
keys into zones or optimize for skill transfer and target selection. In
a study, SwipeRing yielded a 33% faster entry speed (16.67 WPM)
and a 56% lower error rate than C-QWERTY.

Index Terms: Human-centered computing—Text input; Human-
centered computing—Gestural input

1 INTRODUCTION

Smartwatches are becoming increasingly popular among mobile
users [32]. However, the absence of an efficient text entry technique
for these devices limits smartwatch interaction to mostly controlling
applications running on smartphones (e.g., pausing a song on a media
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player or rejecting a phone call), checking notifications on incoming
text messages and social media posts, and using them as fitness
trackers to record daily physical activity. Text entry on smartwatches
is difficult due to several reasons. First, the smaller key sizes of
miniature keyboards make it difficult to tap on the target keys (the
“fat-finger problem” [55]), resulting in frequent input errors even
when augmented with a predictive system. Correcting these errors is
also difficult, and often results in additional errors. To address this,
many existing keyboards use a multi-action approach to text entry,
where the user performs multiple actions to enter one letter (e.g.,
multiple taps [15], chords [41]). This increases not only learning
time but also physical and mental demands. Besides, most existing
keyboards cover much of the smartwatch touchscreen (50–85%),
reducing the real estate available to view or interact with the elements
in the background. Many keyboards for smartwatches that use novel
layouts [1] do not facilitate skill transfer. That is, the skills acquired
in learning new keyboards are usually not usable on other devices.
This discourages users from learning a new technique. Further, most
of these keyboards were designed for square watch-faces, thus do
not always work on round screens. Finally, some techniques rely on
external hardware, which is impractical for wearable devices.

To address these issues, we present SwipeRing, a ring-shaped
keyboard that sits around the smartwatch bezel to enable gesture
typing with the support of a statistical decoder. Its ring-shaped
layout keeps most of the touchscreen available to view additional
information and perform other tasks. It uses a QWERTY-like layout
divided into seven zones that are optimized to provide comfortable
areas to initiate and release gestures, and to maintain similarities
between the gestures drawn on a virtual QWERTY and SwipeRing
to facilitate skill transfer.
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The remainder of the paper is organized as follows. First, we
discuss the motivation for the work, followed by a review of the
literature in the area. We then introduce the new keyboard and
discuss its rigorous optimization process. We present the results of a
user study that compared the performance of the proposed keyboard
with the C-QWERTY keyboard that uses a similar layout but does
not divide the keys into zones or optimize for skill transfer and
target selection. Finally, we conclude the paper with potential future
extensions of the work.

2 MOTIVATION

The design of SwipeRing is motivated by the following considera-
tions.

2.1 Free-up Touchscreen Real-Estate
On a 30.5 mm circular watch, a standard QWERTY layout without
and with the suggestion bar occupy about 66% (480 mm2) and 85%
(621 mm2) of the screen, respectively (Fig. 2). On the same device,
our technique, SwipeRing, occupies only about 36% (254.34 mm2)
of the screen, almost half the QWERTY layout. Saving screen space
is important since the extra space could be used to display additional
information and to make sure that the interface is not cluttered,
which affects performance [24]. For example, the extra space could
be used to display the email users are responding to or more of what
they have composed. The former can keep users aware of the context.
The latter improves writing quality [58, 60] and performance [18].
Numerous studies have verified this in various settings, contexts,
and devices [42–44, 46–49].

Figure 2: When entering the phrase “the work is done take a coffee
break” with a smartwatch QWERTY, only the last 10 characters are
visible (left), while the whole phrase is visible (37 characters) with
SwipeRing (right). Besides, there is extra space available below the
floating suggestion bar to display additional information.

2.2 Facilitate Skill Transfer
The skill acquired in using a new smartwatch keyboard is usually
not transferable to other devices. This discourages users from learn-
ing a new technique. The keyboards that attempt to facilitate skill
transfer are miniature versions of QWERTY that are difficult to use
due to the small key sizes. To mitigate this, most of these keyboards
rely on statistical decoders, making the entry of out-of-vocabulary
words difficult, or impossible. SwipeRing uses a different approach.
Although gesture typing is much faster than tapping [30], it is not a
dominant text entry method on mobile devices. SwipeRing strategi-
cally arranges the letters in the zones to maintain gesture similarities
between the gestures drawn on a virtual QWERTY and SwipeRing
to enable performing the same (or very similar) gesture to enter
the same word on various devices. The idea is that it will encour-
age gesture typing by facilitating skill transfer from smartphones to
smartwatches and vice versa.

2.3 Increase Usability
As a result of an optimization process, the layout is strategically di-
vided into seven zones, accounting for the mean contact area in index

finger touch (between 28.5 and 33.5 mm2 [56]), to facilitate comfort-
able and precise target selection during text entry [38]. The zones
range between 29.34 and 58.68 mm2 (lengths between 9.0 and 18.0
mm), which are within the recommended range for target selection
on both smartphones [26, 31, 39] and smartwatches (7.0 mm) [10].
SwipeRing employs the whole screen for drawing gestures, which
is more comfortable than drawing gestures on a miniature QWERTY.
Unlike most virtual keyboards, SwipeRing requires users to slide
their fingers from/to the zones instead of tapping, which also makes
target selection easier. Existing work on eyes-free bezel-initiated
swipe for the ring-shaped layouts revealed that the most accurate
layouts have 6–8 segments [61]. SwipeRing enables the entry of out-
of-vocabulary words through a multi-tap like an approach [9], where
users repeatedly slide their fingers from/to the zone that contains
the target letter until the letter is entered (see Section 5.2 for further
details). Besides, research showed that radial interfaces on circular
devices visually appear to take less space even when they occupy the
same area as rectangular interfaces, which not only increases clarity
but also makes the interface more pleasant and attractive [45].

2.4 Face Agnostic
Since SwipeRing arranges the keys around the edge of a smartwatch,
it works on both round and square/rectangular smartwatches. To
validate this, we investigated whether the gestures drawn on a square
smartwatch and a circular smartwatch are comparable to the ones
drawn on a virtual QWERTY. A Procrustes analysis on the 10,000
most frequent words drawn on these devices, SwipeRing yielded
a score of 114.81 with the square smartwatch and 118.48 with the
circular smartwatch. This suggests that the gestures drawn on these
devices are very similar. In fact, the square smartwatch yielded a
slightly better score than the circular smartwatch (the smaller the
score, the better the similarity, Section 4.2), most likely because the
shapes of these devices are similar (Fig. 3).

Figure 3: Gestures for the most common word “the” on a circular
SwipeRing, a square SwipeRing, and a virtual QWERTY.

3 RELATED WORK

This section covers the most common text entry techniques for
smartwatches. Tables 1 and 2 summarize the performance of some
of these techniques. For a comprehensive review of existing text
entry techniques for smartwatches, we refer to Arif et al. [1].

3.1 QWERTY Layout
Most text entry techniques for smartwatches are miniature versions
of the standard QWERTY that use multi-step approaches to increase
the target area. ZoomBoard [37] displays a miniature QWERTY that
enables iterative zooming to enlarge regions of the keyboard for
comfortable tapping. SplitBoard [19] displays half of a QWERTY
keyboard so that the keys are large enough for tapping. Users flick
left and right to see the other half of the keyboard. SwipeBoard [5]
requires two swipes to enter one letter, the first to select the target
letter region and the second towards the letter to enter it. DriftBoard
[50] is a movable miniature QWERTY with a fixed cursor point.
To enter text, users drag the keyboard to position the intended key



Table 1: Average entry speed (WPM) of popular keyboards for smart-
watches from the literature (only the highest reported speed in the
last block or session are presented, when applicable) along with the
estimated percentage of touchscreen area they occupy.

Method Used Device Screen
Occupancy

Entry Speed
(WPM)

Yi et al. [62] Watch 1.56” 50% 33.6
WatchWriter [13] Watch 1.30” 85% 24.0
DualKey [16] Watch 1.65” 80% 21.6
SwipeBoard [5] Tablet 45% 19.6
SplitBoard [19] Watch 1.63” 75% 15.9
ForceBoard [20] Phone 67% 12.5
ZoomBoard [37] Tablet 50% 9.3

within the cursor point. Some miniature QWERTY keyboards use
powerful statistical decoders to account for the“fat-finger problem”
[55]. WatchWriter [13] appropriates a smartphone QWERTY for
smartwatches. It supports both predictive tap and gesture typing. Yi
et al. [62] uses a similar approach with even smaller keyboards (30
and 35 mm). VelociWatch [54] also uses a statistical decoder, but
enables users to lock in particular letters of their input to disable
potential auto-corrections. Some techniques use variants of the
standard QWERTY layout. ForceBoard [20] maps QWERTY to a
3×5 grid by assigning two letters to each key. Applying different
levels of force on the keys enters the respective letters. DualKey [16]
uses a similar layout, but requires users to tap with different fingers
to disambiguate the input. It uses external hardware to differentiate
between the fingers. DiaQWERTY [28] uses diamond-shaped keys
to fit QWERTY in a round smartwatch at 10:7 aspect ratio. Optimal-
T9 [40] maps QWERTY to a 3×3 grid, then disambiguates input
using a statistical decoder. These techniques, however, occupy a
substantial area of the screen real-estate, require multiple actions
to enter one letter, or use prediction models that make the entry of
out-of-vocabulary words difficult.

3.2 Other Layouts
There are a few techniques that use different layouts. Dunlop
et al. [10] and Komninos and Dunlop [29] map an alphabetical
layout to six ambiguous keys, then uses a statistical decoder to dis-
ambiguate input. It enables contextual word suggestions and word
completion. QLKP [19] (initially designed for smartphones [21])
maps a QWERTY-like layout to a 3×3 grid. Similar to multi-tap [9],
users tap on a key repeatedly until they get the intended letter. These
techniques also occupy a substantial area of touchscreen real-estate
and require multiple actions to enter one letter.

3.3 Ring-Shaped Layouts
There are some ring-shaped keyboards available for smartwatches.
InclineType [17] places an alphabetical layout around the edge of
the devices. To enter a letter, users first select the letter by moving
the wrist, then tap on the screen. COMPASS [63] also uses an
alphabetical layout, but does not use touch interaction. To enter
text, users rotate the bezel to place one of the three available cursors
on the desired letter, then press a button on the side of the watch.
WrisText [12] is a one-handed technique, with which users enter
text by whirling the wrist of the hand towards six directions, each
representing a key in a ring-shaped keyboard with the letters in
alphabetical order. BubbleFlick [52] is a ring-shaped keyboard for
Japanese text entry. It enables text entry through two actions. Users
first touch a key, which partitions the ring-shaped area inside the
layout into four radial areas for the four kana letters on the key. Users
then stroke towards the intended letter to enter it. A commercial
product, TouchOne Keyboard Wear [53] divides an alphabetical
layout into eight zones to let users enter text using a T9-like [14]

Table 2: Average entry speed (WPM) of popular ring-shaped key-
boards for smartwatches from the literature (only the highest reported
speed in the last block or session are presented, when applicable)
along with the estimated percentage of touchscreen area they occupy.

Method Used Device Screen
Occupancy

Entry Speed
(WPM)

WrisText [12] Watch 1.4” 42.99% 15.2
HiPad [22] VR 39.70% 13.6
COMPASS [63] Watch 1.2” 36.07% 12.5
BubbleFlick [52] Watch 1.37” 52.06% 8.0
C-QWERTYgesture [7] Watch 1.39” 43.16% 7.7
Cirrin [25] PC 60.57% 6.4
InclineType [17] Watch 1.6” 38.64% 5.9

approach. It enables the entry of out-of-vocabulary words using
an approach similar to BubbleFlick. Go et al. [11] designed an
eyes-free text entry technique that enables users to EdgeWrite [59]
on a smartwatch with the support of auditory feedback. Most of
these techniques use a sequence of actions or a statistical decoder
to disambiguate the input. Besides, most of these techniques are
standalone, hence the skills acquired in using these keyboards are
usually not usable on other devices.

Cirrin [35] is a pen-based word-level text entry technique for
PDAs. It uses a novel ring-shaped layout with dedicated keys for
each letter. To enter a word, users pass their pen through the intended
letters. This approach has also been used on other devices [25].
C-QWERTY is a similar technique [7], but differs in letter arrange-
ment, which is based on the QWERTY layout. To enter a word with
C-QWERTY, users either tap on the letters in the word individually
or drag the finger over them in sequence. While there are some simi-
larities between Cirrin, C-QWERTY, and SwipeRing, the approach
employed in the latter technique is fundamentally different. First,
SwipeRing divides the layout into seven zones, thus does not require
precise selection of the letters, but much larger zones. Both Cir-
rin and C-QWERTY, in contrast, use individual keys for each letter,
thus require a precise selection of the keys. Second, like gesture
typing on a smartphone, SwipeRing does not require users to go
over the same letter (or the letters on the same zone) repeatedly if
they appear in a word multiple times in sequence (such as, “oo” in
“book”). But both Cirrin and C-QWERTY require users to go over the
same letter repeatedly in such cases by sliding the finger out of the
keyboard then sliding back to the key. We found out users use this
strategy also for entering letters that have the respective keys placed
side-by-side, as they are difficult to select consecutively due to the
smaller size. Finally, SwipeRing is optimized to maintain gesture
similarities between SwipeRing and a virtual QWERTY to facilitate
skill transfer between devices.

4 LAYOUT OPTIMIZATION

SwipeRing maps the standard QWERTY layout to a ring around
the edge of a smartwatch (Fig. 1). It places the left and the right-
hand keys of QWERTY [36] to the left and right sides of the layout,
respectively. Likewise, the top, home, and bottom row keys of
QWERTY are placed at the top, middle, and bottom parts of the
layout, respectively. Each letter is positioned at multiple of 360◦/26,
resulting in an angular step of 13.80◦, starting with the letter ‘q’ at
180◦. This design was adapted to maintain a likeness to QWERTY
to exploit the widespread familiarity with the keyboard to facilitate
learning [21, 40]. We then grouped the letters into zones to improve
the usability of the keyboard by facilitating precise target selection,
further discussed in Section 4.3. In practice, the letters can be
grouped in numerous different ways, resulting in a set of possible
layouts L. However, the purpose here was to identify a particular
layout l ∈ L that ensures that the gestures drawn on the layout l



are similar to the ones drawn on a virtual QWERTY. This requires
searching for an optimal letter grouping that maximizes gesture
similarity. We introduce the following notation to formally define
the optimization procedure. Let gQ(w) be the gesture used to enter a
word w on the virtual QWERTY and gSwipeRing(w; l) be the gesture
used to enter the word w on the layout l of SwipeRing. Instead of
maximizing the similarity between the gestures, we can equivalently
minimize the discrepancy between the gestures, which we measure
using a function ψ . Then, our problem is to find the layout l that
minimizes the following loss function L :

min
layout l∈L

L (l) = ∑
w∈W

p(w)ψ

(
gQ(w),gSwipeRing(w; l)

)
. (1)

Here, the dissimilarity between the gestures is weighted by the
probability of the occurrence of the word to assure that the gestures
for the most frequent words are the most similar. We made several
modeling assumptions and simplifications to efficiently optimize
this problem, which are discussed in the following sections.

4.1 Gesture Modelling
We model each gesture as a piece-wise linear curve connecting the
letters on a virtual QWERTY or the zones on SwipeRing. There-
fore, the gesture for a word composed of n letters can be seen as
a 2× n dimensional matrix (Fig. 4), where each column contains
coordinates (x,y) of the corresponding letter. To simulate the drawn
gesture on a virtual QWERTY for the word w, denoted as gQ(w), we
connect the centers of the corresponding keys of the default Android
QWERTY on a Motorola G5 smartphone (24 cm2 keyboard area)1,
producing unique gestures for each word. With SwipeRing, how-
ever, we account for the fact that a word can have multiple gestures
forming a set GSwipeRing(w; l). The zones containing 4–6 letters are
wide enough to enable initiating a gesture either at the center, left,
or right side of the zone (Fig. 5), resulting in multiple possibilities.
Therefore, we set the gesture gSwipeRing(w; l) to be the one that has
minimal difference when compared to the gesture drawn on the
virtual QWERTY measured by discrepancy function ψ:

gSwipeRing(w; l) := argmin
g∈GSwipeRing(w; l)

ψ(gQ(w),g). (2)

4.2 Discrepancy Function
For the discrepancy function ψ(g1,g2) between gestures g1 and g2,
our requirement is to have a rotation and scale agnostic measure that
attains a value of 0 if and only if g2 is a rotated and re-scaled version

1Since most virtual QWERTY layouts maintain comparable aspect ratios
and the gestures only loosely connect the keys, the gestures on different
sized phones, keyboards, keys are comparable when the recognizer is size
agnostic. A Procrustes analysis of the gestures drawn on five different sized
phones with different keyboards and key sizes yielded results between 6 and
19, suggesting they are almost identical.

Figure 4: The gesture for the most common word “the” on a virtual
QWERTY and the respective 2×3 dimensional matrix.

Figure 5: Gestures on the three letter zones are likely to be initiated
from the center, while gesture on the wider zones (such as, a six letter
zone) can be initiated from either the center or the two sides.

of g1. One possible form of such ψ function can be defined as yet
another optimization problem of:

ψ(g1,g2) = min
R,α
‖g2−αRg1‖2

F . (3)

Where α and R are the rescaling factor and the rotation matrix
applied to a gesture, respectively, while ‖.‖F is the Frobenius norm2.
We recognize Equation 3 as an Ordinary Procrustes analysis problem,
the solution of which is given in closed-form by Singular Value
Decomposition [8]. Note that the value of ψ(g1,g2) is within the
range of [0,∞]. Additionally, we restrict the rotation within the range
of ±45◦ since SwipeRing gestures that are rotated more than 45◦ in
either direction are unlikely to look similar to their virtual QWERTY
counterparts (Fig. 6).

Best Match Average Match Worst Match
ψ(g1,g2)=0.86 ψ(g1,g2)=57.49 ψ(g1,g2)=133.53

“the”

Figure 6: Gesture dissimilarity measures using the Procrustes loss
function. The red curve represents the gesture for the word “the” on a
virtual QWERTY (g1), the blue curves represent gestures for the same
word on a SwipeRing layout (g2), and the gray dots show the optimal
rotation and rescaling of the gesture (g1) represented as (αRg1) to
match (g2).

4.3 Enumeration of All Possible Letter Groupings
The total number of possible letter groupings, and thus layouts,
depends on how large we allow the groups to be. To determine
this, we conducted a literature review of ambiguous keyboards that
use linguistic models for decoding the input to find out whether the
number of letters assigned per key or zone (the level of ambiguity)
affects the performance of a keyboard. Table 3 displays an excerpt
of our review, where one can see “somewhat” inverse relationship
between the level of ambiguity and entry speed. Keyboards that
assign fewer letters per key or zone yield a relatively better entry
speed than those with more letters per key or zone. Based on this, we
decided to assign 3–6 letters per zone. Although, this alone cannot
determine the appropriate number of letters in each key since the
performance of a keyboard depends on other factors, such as the
layout and the reliability of the decoder, it gives a rough estimate.

2Frobenius norm is a generalization of Euclidean norm to the matrices,
such as if A is a matrix then ‖A‖2

F = ∑i, j a2
i j



Table 3: Average entry speed of several ambiguous keyboards that
map multiple letters to each key or zone.

Method Letters per Key Entry Speed (WPM)

COMPASS [63] 3 9–13
HiPad [22] 4–5 9.6–11
WrisText [12] 4–5 10
Komninos, Dunlop [10, 29] 3–6 8

Next, we discovered all possible shatterings of the ring-shaped
string {qwertyuiophjklmnbvcxzgfdsa} into substrings of length
3–6 letters each, resulting in 4,355 different layouts in total, which
constitute our search set L. Each possible shattering, such as
{qwer}{tyu}{iophjk}{lmnbv}{cxzg}{fdsa}, represents one
possible layout. We tested several of these layouts on a small
smartwatch (9.3 cm2 circular display) to investigate if the zones
containing three letters are wide enough for precise target selection.
Results showed that the zones range between 29.0 and 57.5 mm2

(lengths between 9.0 and 18.0 mm), which are within the length
recommended for target selection on both smartphones [26, 31, 39]
and smartwatches (7.0 mm) [10]. Fig. 7 illustrate some of these
layouts.

Smartphone QWERTY
SwipeRing layouts

l=15 l = 2824 l = 4225

“the”

Figure 7: Gesture typing the word “the” on a virtual QWERTY and three
possible SwipeRing layouts. For the virtual QWERTY, the figure shows
gQ(“the”). For the SwipeRing layouts, the figure shows all possible
gestures for “the”: GSwipeRing(“the”, l). Notice how the gestures for the
same word are different on different SwipeRing layouts.

4.4 Algorithm

To find the optimal layout, we simulated billions of gestures for the
10,000 most frequent words in the English language [57] on the
4,355 possible segmented SwipeRing layouts3. We then matched
the gestures produced for each word on each layout with the gestures
produced on a virtual QWERTY using the Procrustes analysis to pick
the layout that yielded the best match score (118.48). The final
layout (Fig. 1) scored, on average, 1.27 times better Procrustes value
compared to the other possible layouts.

5 KEYBOARD FEATURES

This section describes some key features of the proposed keyboard.

5.1 Decoder

We developed a simple decoder to suggest corrections and display
the most probable words in a suggestion bar. For this, we used a
combination of a character-level language model and a word-level
bigram model for the next word prediction. To this end, we calculate
the conditional probability of the user typing the word w given that

3We only used words that had more than one letter, there were 9,828 such
words in the corpus.

Algorithm 1: Search for an optimal layout l.
Input: Possible grouping layouts L = {l1, l2, . . .}, word

corpus W = {w1,w2, . . .}
Function OptLayout(L,W):

Lmin← ∞, lmin← ∞

for layout l ∈ L do
L ← 0
for word w ∈W do

L ←L + p(w)ψ

(
gQ(w),gSwipeRing(w; l)

)
end
if L ≤Lmin then

Lmin←L , lmin← l
end

end

the previous word was wn−1 and the current zone sequence is s:

P(wn =w|s,wn−1) =
P(wn = w,s,wn−1)

P(s,wn−1)

=
count(wn = w,wn−1)×match(M(w),s)

∑w′ count(wn = w′,wn−1)×match(M(w′),s))
.

(4)

Here, M(w) is the sequence of zones that the user must gesture
over to enter the word w with SwipeRing, match(s1,s2) is the in-
dicator function that returns 1 if s2 is a prefix of s1 or 0 other-
wise, and count(wn,wn−1) is the number of occurrences of a bigram
(wn,wn−1) in the training corpus.

To predict the most probable word for a given zone sequence s
and previous word wn−1, we compute argmaxw P(wn = w|s,wn−1)
using the prefix tree (Trie) data structure. This implementation can
output k highest probable words, which we display in the suggestion
bar. When no word has been typed yet, we use a unigram reduction
of the model, otherwise, we use the bigram model trained on the
COCA corpus [6]. Due to the limited memory capacity of the
smartwatch, the Trie uses the 1,300 most probable bigrams: bigram
models scale as the square of the number of words, thus quickly
outrun the available memory on the device. If the Trie does not have
a bigram containing the user’s previous word wn−1, we revert to the
unigram predictions. Our language model is fairly simple, and more
advanced models (involving neural nets, for instance) can be created.
However, devising efficient language models for new keyboards is a
research problem on its own and beyond the scope of our paper.

After obtaining the list of the most probable words, SwipeRing
places up to 10 most probable words in the suggestion bar, automati-
cally positioned in close proximity to the input area (Fig. 1). The
suggestion bar automatically updates as the user continues gesturing.
Once done, the most probable word from the list is entered. The user
could select a different word from the suggestion bar by tapping on
it, which replaces the last entered word. Although the user can only
see 2–4 words in the suggestion bar due to the smaller screen, she
can swipe left and right on the bar to see the remaining words.

5.2 One-Letter and Out-of-Vocabulary (OOV) Words

SwipeRing enables the entry of one-letter and out-of-vocabulary
words through repeated taps or strokes from/to the zones contain-
ing the target letters. The keyboard first enters the two one-letter
words in the English language “a” and “I”, then the other letters in
the sequence in which they appear in the zones, like multi-tap [9].
For instance, to enter the letter ‘e’, which is in the top-right zone
containing the letters: ‘q’, ‘w’, ‘e’, and ‘r’ (Fig. 1), the user taps or
slides the finger three times from the middle area to the zone or from
the edge to the middle area (Fig. 8).



Figure 8: SwipeRing enables users to enter one-letter and out-of-
vocabulary words by repeated strokes from/to the zones containing
the target letters, like multi-tap (right). Users could also repeatedly
tap on the zones (instead of strokes) to enter the letters (left).

5.3 Error Correction and Special Characters
SwipeRing automatically enters a space when a word is predicted or
manually selected from the suggestion bar. During character-level
text entry (to enter out-of-vocabulary words), users enter space by
performing a right stroke inside the empty area of the keyboard.
Tapping on the transcribed text deletes the last entry, either a word or
a letter. The keyboard performs a carriage return or an enter action
when the user double-taps on the screen. Currently, SwipeRing
does not support uppercase letters, special symbols, numbers, and
languages other than English. However, these could be easily added
by enabling the user to long-press or dwell on the screen or the zones
to switch back and forth between the cases and change the layout
for digits and symbols. Note that the evaluation of novel text entry
techniques without the support for numeric and special characters is
common practice since it eliminates a potential confound [34].

6 USER STUDY

We conducted a user study to compare SwipeRing with C-QWERTY.
C-QWERTY uses almost the same layout as SwipeRing but places
‘g’ at the NE corner, while SwipeRing places it at the SW corner
(left side of the layout since ‘g’ on QWERTY is usually pressed with
the left hand). Both layouts share the design goal of maintaining sim-
ilarity to QWERTY by using the touch-typing metaphor of physical
keyboards (keys assigned to different hands). This likely resulted in
similar (but nonidentical) layouts. Studies showed that using a phys-
ical analogy/metaphor like this enables novices to learn a method
faster by skill transfer [33, pp. 255–263]. Besides, C-QWERTY does
not divide the keys into zones, optimize them for gesture typing
and skill transfer, and uses a slightly different mechanism for ges-
ture drawing approaches for the two are also different (Section 3.3).
Hence, a comparison between the two will highlight the performance
difference due to the contributions of this work.

6.1 Apparatus
We used an LG Watch Style smartwatch, 42.3×45.7×10.8 mm, 9.3
cm2 circular display, 46 grams, running on the Wear OS at 360×360
pixels in the study (Fig. 9). We decided to use a circular watch
in the study since it is the most popular shape for (smart)watches
[23, 27]. We developed SwipeRing with the Android Studio 3.4.2,
SDK 28. We collected the original source code of C-QWERTY from
Costagliola et al. [7], which was also developed for the Wear OS.
Both applications calculated all performance metrics directly and
logged all interactions with timestamps.

6.2 Design
We used a between-subjects design to avoid interference between
the conditions. Since both techniques use similar layouts, the skill
acquired while learning one technique would have affected perfor-
mance with the other technique [33]. There were separate groups
of twelve participants for C-QWERTY and SwipeRing. Each group
used the respective technique to enter short English phrases in eight

Table 4: Demographics of the C-QWERTY study. YoE stands for years
of experience.

Age 21–34 years (M = 25.8, SD = 3.92)
Gender 3 female, 9 male
Handedness 11 right, 1 left
Owner of smartwatches 5 (M = 0.8 YoE, SD = 1.4)
Experienced gesture typists 3 (M = 4.7 YoE, SD = 2.5)

Table 5: Demographics of the SwipeRing study. YoE stands for years
of experience.

Age 21–28 years (M = 24.8, SD = 2.33)
Gender 4 female, 8 male
Handedness 10 right, 1 ambidextrous, 1 left
Owner of smartwatches 6 (M = 1.2 YoE, SD = 0.9)
Experienced gesture typists 3 (M = 2.7 YoE, SD = 0.9)

blocks. Each block contained 10 random phrases from a set [34].
Hence, the design was as follows.

2 groups: C-QWERTY and SwipeRing ×
12 participants ×
8 blocks ×
10 random phrases = 1,920 phrases in total.

6.3 Participants
Twenty-four participants took part in the user study. They were
divided into two groups. Table 4, 5 present the demographics of
these groups. Almost all participants chose to wear the smartwatch
on their left hand and perform the gestures using the index finger
of the right hand (Fig. 9). All participants were proficient in the
English language. In both groups, three participants identified them-
selves as experienced gesture typists. However, none of them used
the method dominantly, instead frequently switched between tap
typing and gesture typing for text entry. The remaining participants
never or very rarely used gesture typing on their devices. Initially,
we wanted to recruit more experienced gesture typists to compare
the performance of inexperienced and experienced users to inves-
tigate whether the gesture typing skill acquired on mobile devices
transferred to SwipeRing. But we were unable to recruit experi-
enced gesture typists after months of trying. This strengthens our
argument that gesture typing is still not a dominant method of text
entry, regardless of being much faster than tap typing [30], and using
SwipeRing may encourage some users to apply the acquired skill
on mobile devices. All participants received a small compensation
for participating in the study.

6.4 Performance Metrics
We calculated the conventional words per minute (WPM) [2] and
total error rate (TER) performance metrics to measure the speed
and accuracy of the keyboard, respectively. TER [51] is a commonly
used error metric in text entry research that measures the ratio of the

Figure 9: The device with C-QWERTY and a participant volunteering in
the study over Zoom (left). The device with SwipeRing and a volunteer
participating in the study (right).
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Figure 10: Average entry speed (WPM) per block fitted to a power
trendline (top). The SwipeRing group surpassed the C-QWERTY
group’s maximum entry speed by the third block. Note the scale
on the vertical axis. Average entry speed (WPM) with the two tech-
niques for each participant in the final block (bottom).

total number of incorrect characters and corrected characters to the
total number of correct, incorrect, and corrected characters in the
transcribed text. We also calculated the actions per word metric that
signifies the average number of actions performed to enter one word.
An action could be a gesture performed to enter a word, a tap on the
suggestion bar, or a gesture to delete an unwanted word or letter.

6.5 Procedure
The study was conducted in a quiet room, one participant at a time.
First, we introduced the keyboards to all participants, explained the
study procedure, and collected their consents. We then asked them to
complete a short demographics and mobile usage questionnaire. We
instructed participants to sit on a chair, wear the smartwatch on their
preferred hand, and practice with the keyboard they were assigned
to by transcribing two short phrases. These practice phrases were
not included in the main study. Interestingly, all participants decided
to wear the smartwatch on their left hand and perform the gestures
using the index finger of the other hand. The actual study started
after that. There were eight blocks in each condition, with at least
5-10 minutes gap between the blocks. In each block, participants
transcribed ten random short English phrases from a set [34] using
either C-QWERTYGesture or SwipeRing. Both applications presented
one phrase at a time at the bottom of the smartwatch (Fig. 9). Partic-
ipants were instructed to read, understand, and memorize the phrase,
transcribe it “as fast and accurate as possible”, then double-tap on
the touchscreen to see the next phrase. The transcribed text was
displayed on the top of the smartwatch. Error correction was recom-
mended but not forced. After the study, all participants completed a
short post-study questionnaire that asked them to rate various aspects
of the keyboard on a 7-point Likert scale. It also enabled participants
to comment and give feedback on the examined keyboards.

Due to the spread of COVID-19, the C-QWERTY group partic-
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Figure 11: Average total error rate (TER) (top) and actions per word
(APW) (bottom) in each block fitted to a power trendline. Note the
scale on the vertical axis.

ipated in the study via Zoom, a teleconference application. We
personally delivered the smartwatch to each participant’s mailbox
and scheduled individual online sessions with them. They were
instructed to join the session from a quiet room. All forms were
completed and signed electronically. Apart from that, an online ses-
sion followed the same structure as a physical session. A researcher
observed and recorded a complete study session. We picked up the
devices after the study. The device, the charger, and the container
were disinfected before delivery and after pickup.

6.6 Results

A Shapiro-Wilk test revealed that the response variable residuals
were normally distributed. A Mauchly’s test indicated that the vari-
ances of populations were equal. Hence, we used a Mixed-design
ANOVA for one between-subjects and one within-subjects factors
(technique and block, respectively). We used a Mann-Whitney U
test to compare user ratings of various aspects of the two techniques.

6.6.1 Entry Speed

An ANOVA identified a significant effect of technique on entry speed
(F1,22 = 25.05, p < .0001). There was also a significant effect of
block (F7,22 = 63.65, p < .0001). The technique× block interaction
effect was also statistically significant (F7,154 = 4.02, p < .0005).
Fig. 10 (top) illustrates average entry speed for both techniques in
each block, fitted to a function to model the power law of practice [4].
In the last block, the average entry speed with C-QWERTY and
SwipeRing were 11.20 WPM (SD = 3.0) and 16.67 WPM (SD
= 5.36), respectively. Nine users of SwipeRing yielded a much
higher entry speed than the maximum entry speed reached with
C-QWERTY, illustrated in Fig. 10 (bottom). The highest average



y = 10.543x0.2638
R² = 0.8732

y = 8.6017x0.2632
R² = 0.9702

y = 8.2552x0.153
R² = 0.8142

y = 6.1182x0.2741
R² = 0.9547

5.5

7.1

8.7

10.3

11.9

13.5

15.1

16.7

18.3

19.9

1 2 3 4 5 6 7 8

W
or

ds
 P

er
 M

in
ut

e 
(W

PM
)

Block

SwipeRing Experienced SwipeRing Inexperienced
C-Qᴡᴇʀᴛʏ Experienced C-Qᴡᴇʀᴛʏ Inexperienced
Power (SwipeRing Experienced) Power (SwipeRing Inexperienced)
Power (C-Qᴡᴇʀᴛʏ Experienced) Power (C-Qᴡᴇʀᴛʏ Inexperienced)

Figure 12: Average entry speed (WPM) per block for the two user
groups with the two techniques fitted to power trendlines. Note the
scale on the vertical axis.

entry speed in the last block was 21.53 WPM (P23, inexperienced
gesture typist).

6.6.2 Error Rate

An ANOVA identified a significant effect of technique on error
rate (F1,22 = 24.61, p < .0001). There was also a significant effect
of block (F7,22 = 2.89, p < .01). However, the technique × block
interaction effect was not significant (F7,154 = 1.01, p> .05). Fig. 11
(top) illustrates average error rate for both techniques in each block,
fitted to a function to model the power law of practice [4]. In the
last block, the average error rates with C-QWERTY and SwipeRing
were 12.52% (SD = 13.91) and 5.56% (SD = 8.53), respectively.

6.6.3 Actions per Word

An ANOVA identified a significant effect of technique on actions per
word (F1,22 = 10.31, p < .005). There was also a significant effect
of block (F7,22 = 3.14, p < .005). However, the technique × block
interaction effect was not significant (F7,154 = 0.61, p> .05). Fig. 11
(bottom) illustrates average actions per word for both techniques in
each block, fitted to a function to model the power law of practice [4].
In the last block, the average actions per word with C-QWERTY and
SwipeRing were 2.45 (SD = 1.64) and 1.59 (SD = 0.72), respectively.

6.7 Inexperienced vs. Experienced Gesture Typists
Although there were not enough data points to run statistical tests
to compare the two user groups, average performance over blocks
suggests that learning occurred with both experienced and inexpe-
rienced gesture typists with both techniques. The average entry
speed over block correlated well with the power law of practice
for C-QWERTY with both user groups (experienced: R2 = 0.8142,
inexperienced: R2 = 0.9547), also for SwipeRing (experienced:
R2 = 0.8732, inexperienced: R2 = 0.9702), illustrated in Fig. 12.
The average error rate over block for both techniques, in contrast,
correlated well with the power law of practice [4] for inexperienced
participants (C-QWERTY: R2 = 0.86, SwipeRing: R2 = 0.7019),
but not for experienced participants (C-QWERTY: R2 = 0.0231,
SwipeRing: R2 = 0.3329). The average actions per word over block
yielded a similar trend for C-QWERTY, where learning was ob-
served with inexperienced participants (R2 = 0.8978), but not with
experienced participants (R2 = 0.1426). However, with SwipeRing,
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Figure 13: Average error rate (TER) (top) and average actions per
word (APW) (bottom) per block for the two user groups with the two
techniques fitted to power trendlines. Note the scale on the vertical
axis.

both user groups continued improving with practice (experienced:
R2 = 0.7171, inexperienced: R2 = 0.8012), see Fig. 13.

6.8 User Feedback
A Mann-Whitney U test identified a significant effect of technique
on willingness to use (U = 21.0,Z = −3.1, p < .005), perceived
speed (U = 22.5,Z = −3.07, p < .005), and perceived accuracy
(U = 27.0,Z =−2.72, p < .01). However, there was no significant
effect on ease of use (U = 48.0,Z =−1.5, p > .05) or learnability
(U = 66.0,Z = −0.37, p > .05). Fig. 14 illustrates median user
ratings of all investigated aspects of the two keyboards on a 7-point
Likert scale.

7 DISCUSSION

SwipeRing reached a competitive entry speed in only eight short
blocks. It was 33% faster than C-QWERTY. The average entry
speed with C-QWERTY and SwipeRing were 11.20 WPM and 16.67
WPM, respectively. Four participants reached over 20 WPM with
SwipeRing (Fig. 10, bottom). Further, the SwipeRing group sur-
passed the C-QWERTY group’s maximum entry speed by the third
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Figure 14: Median user ratings of the willingness to use, ease of use,
learnability, perceived speed, and perceived accuracy of SwipeRing
and C-QWERTY on a 7-point Likert scale, where “1” to “7” represented
“Strongly Disagree” to “Strongly Agree”. The error bars signify ±1
standard deviations (SD).

block (Fig. 10, top). It also performed better than all popular ring-
shaped text entry techniques (Table 2) and some QWERTY-based
techniques (Table 1) for smartwatches. Yi et al. [62] and Watch-
Writer [13] reported much higher entry speed than SwipeRing. Both
techniques use aggressive statistical models with a miniature QW-
ERTY to account for frequent incorrect target selection due to the
smaller key sizes (the “fat-finger problem” [55]). This makes enter-
ing out-of-vocabulary words difficult with these techniques. In fact,
the former technique does not include a mechanism for entering out-
of-vocabulary words [62, p. 58]. DualKey [16] and SwipeBoard [5]
also reported higher entry speed than SwipeRing. However, Du-
alKey depends on external hardware to distinguish between different
fingers and has a steep learning curve (the reported entry speed
was achieved in the 15th session). SwipeBoard, on the other hand,
was evaluated on a tablet computer, hence unclear whether the re-
ported entry speed can be maintained on an actual smartwatch. Be-
sides, all of these keyboards occupy about 45–85% of the screen
real-estate, leaving a little room for displaying the entered text, let
alone additional information. There was a significant effect of block
and technique × block on entry speed. Entry speed increased by
38% with C-QWERTY and 43% with and SwipeRing in the last
block compared to the first. The average entry speed over block for
both techniques correlated well with the power law of practice [4]
(R2 = 0.9588). However, the learning curve for C-QWERTY was flat-
tening out by the last block, while SwipeRing was going strong. An
analysis revealed that entry speed improved by 2% with C-QWERTY
and 13% with SwipeRing in the last block compared to the second-
last. This suggests that SwipeRing did not reach its highest possible
speed in the study. Relevantly, the highest entry speed recorded in
the study was 33.18 WPM (P23, Block 6).

There was a significant effect of technique on error rate.
SwipeRing was significantly more accurate than C-QWERTY
(Fig. 11, top). The average error rate with C-QWERTY and
SwipeRing were 12.52% and 5.56%, respectively, in the last block
(56% fewer errors with SwipeRing). This is unsurprising since the
designers of C-QWERTY also reported a high error rate with the
technique (20.6%) using the same TER metric [7] that accounts for
both corrected and uncorrected errors in the transcribed text [51].
Most text entry techniques for smartwatches report character er-
ror rate (CER) that only accounts for the uncorrected errors in the
transcribed text [2]. Most errors with C-QWERTY were commit-
ted due to incorrect target selection since the keys were too small.
SwipeRing yielded a lower error rate due to the larger zones that

were designed to accommodate precise target selection. There was
a significant effect of block on error rate. Participants commit-
ted 13% fewer errors with C-QWERTY and 29% fewer errors with
SwipeRing in the last block compared to the first. The average error
rate over block correlated moderately for C-QWERTY (R2 = 0.5895)
but well for SwipeRing (R2 = 0.8706) with the power law of prac-
tice [4]. Hence, it is likely that SwipeRing will become much more
accurate with practice. Actions per word yielded a similar pattern
as error rate. SwipeRing consistently required fewer actions to
enter words than C-QWERTY (Fig. 11, bottom). C-QWERTY and
SwipeRing required on average 2.45 and 1.59 actions per word in the
last block, respectively (35% fewer actions with SwipeRing). This is
mainly because participants performed fewer corrective actions with
SwipeRing than C-QWERTY. There was also a significant effect
of block. The average actions per word over block correlated well
for SwipeRing (R2 = 0.8459) but not for C-QWERTY (R2 = 0.4999)
with the power law of practice [4]. This suggests that actions per
word with SwipeRing is likely to further improve with practice.

Qualitative results revealed that the SwipeRing group found the
examined technique faster and more accurate than the C-QWERTY
group (Fig. 14). These differences were statistically significant. Con-
sequently, the SwipeRing group was significantly more interested
in using the technique on their devices than the C-QWERTY group.
However, both techniques were rated comparably on ease of use
and learnability, which is unsurprising since both techniques used
similar layouts.

We compared the performance of C-QWERTY in our study with
the results from the literature to find out whether conducting the
study remotely affected its performance. Costagliola et al. [7] re-
ported a 7.7 WPM entry speed with a 20.6% error rate on a slightly
larger smartwatch using the same phrase set in a single block con-
taining 6 phrases. In our study, C-QWERTY yielded a comparable 7
WPM and 16.8% error rate in the first block containing 10 phrases.

7.1 Skill Transfer from Virtual QWERTY

Although there were not enough data points to run statistical tests,
average performance over blocks suggests that experienced partici-
pants were performing much better with both techniques from the
start. Fig. 12 shows that experienced participants consistently per-
formed better than inexperienced participants. This suggests that
experienced participants were able to transfer their smartphone ges-
ture typing skills to both techniques. However, with C-QWERTY,
inexperienced participants almost caught up with the experienced
participants by the last block. While with SwipeRing, both user
groups were learning at comparable rates in all blocks. Besides,
both experienced and inexperienced participants constantly per-
formed better with SwipeRing than C-QWERTY. These indicate
towards the possibility that optimizing the zones for gesture similar-
ities facilitated a higher rate of skill transfer. As blocks progressed,
experienced participants were most probably more confident, con-
sciously or subconsciously, in applying their gesture typing skills to
SwipeRing.

Interestingly, error rate and actions per word patterns were quite
different from the patterns observed in entry speed. With SwipeRing,
experienced participants were consistently better than inexperienced
users, while inexperienced participants were learning to be more
accurate. We speculate this is because experienced participants
made fewer errors than inexperienced participants, which required
performing fewer corrective actions (a phenomenon reported in the
literature [3]). In contrast, with C-QWERTY, experienced partici-
pants committed more errors, requiring more corrective actions. In
Fig. 13, one can see that experienced participants’ error rates and
actions per word went up and down in alternating blocks. We do not
have a definite explanation for this, but based on user comments we
speculate that this is because experienced participants were trying
to apply their gesture typing skills to C-QWERTY, only committing



more errors due to the smaller target size, then reduced speed in
the following block to increase accuracy (i.e., the speed-accuracy
trade-off). This process continued till the end of the study. Interest-
ingly, with SwipeRing, both inexperienced and experienced gesture
typists were improving their average actions per word with practice.
It could be because participants gradually learned how to exploit the
wider zones of the layout to reduce the number of incorrect actions.
This suggests that optimizing the zones for precise target selection
facilitated a higher rate of skill acquisition.

8 CONCLUSION

We presented SwipeRing, a ring-shaped keyboard arranged around
the bezel of a smartwatch to enable gesture typing with the support
of a statistical decoder. It also enables character-based text entry
by using a multi-tap like approach. It divides the layout into seven
zones and maintains a resemblance to the standard QWERTY layout.
Unlike most existing solutions, it does not occupy most of the touch-
screen real-estate or require repeated actions to enter most words.
Yet, it employs the whole screen for drawing gestures, which is
more comfortable than drawing gestures on a miniature QWERTY.
The keyboard is optimized for target selection and to maintain simi-
larities between the gestures drawn on a smartwatch and a virtual
QWERTY to facilitate skill transfer between devices. We compared
the technique with C-QWERTY, a similar technique that uses almost
the same layout to enable gesture typing, but does not divide the
keyboard into zones or optimize the zones for target selection and
gesture similarity. In the study, SwipeRing yielded a 33% higher
entry speed, 56% lower error rate, and 35% lower actions per word
than C-QWERTY in the last block. The average entry speed with
SwipeRing was 16.67 WPM, faster than all popular ring-shaped
and most QWERTY-based text entry techniques for smartwatches.
Results indicate towards the possibility that skilled gesture typists
were able to transfer their skills to SwipeRing. Besides, participants
found the keyboard easy to learn, easy to use, fast, and accurate, thus
wanted to continue using it on smartwatches.

9 FUTURE WORK

There are multiple possible extensions to our work. First, the pro-
posed keyboard could be useful in saving touchscreen real-estate on
larger devices, such as smartphones and tablets. The keyboard could
appear on the screen like a floating widget, where users perform
gestures to enter text. Second, the SwipeRing can be used in virtual
and augmented reality by using a smartwatch or different types of
controllers. Finally, there is a possibility of an eyes-free text entry
with SwipeRing. We speculate, when the positions of the zones
are learned, users would be able to perform the gestures without
visual aid. This can make the whole touchscreen available to display
additional information by making the keyboard invisible.

9.1 Limitations

We discussed several limitations of the work. To summarize: first,
we had different numbers of experienced and inexperienced par-
ticipants in the study. The sample size was also small. Hence, a
definitive conclusion cannot be drawn about the transference of skill
between devices. Second, due to the spread of COVID-19, we had
to switch to an online format mid-study, as in-person studies were
unsafe. This resulted in one condition being studied in-person, while
the other online. However, based on the performance reported in
prior work, we speculate that this did not impact the findings of this
research. Finally, we did not investigate the proposed method in
mobile settings, such as while walking or commuting. However, we
anticipate our method to perform much better in such scenarios com-
pared to the conventional methods since it does not always require
precise target selection.
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