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ABSTRACT

We used the LED array around the edges of a custom tangible as a

low-resolution display to provide users with real-time visual feed-

back on the current state of the system. We developed a guideline

for mapping diferent types of edge feedback to diferent tangible

interactions. We evaluated its efectiveness in two user studies. The

irst is an informal study, where experienced biologists worked

with an existing tangible-tabletop biological system. The second

is a formal study, where novice participants worked with a new

tangible-tabletop biological system. Results of these studies suggest

that edge feedback provides a better understanding of the system,

increases user conidence, and can be useful in other interactive

systems. Results also suggest that the proposed feedback mapping

is intuitive and easy to remember.

CCS CONCEPTS

· Human-centered computing → Displays and imagers; In-

teraction techniques.
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1 INTRODUCTION

Ullmer et al. [27] deined tangibles, also known as tokens, as łdis-

crete, spatially reconigurable physical objects that typically rep-

resent digital informationž. A tangible could be either passive or

active. Passive tangibles employ a one-way communication model,

typically from the tangibles to other interactive devices, hence can-

not relect changes in the digital model. Active tangibles, on the

other hand, maintain a two-way communication between the tan-

gibles and other devices, therefore can relect changes in the digital
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model. Passive or active tangibles, together with other interactive

devices, form a tangible user interface [27].

Feedback is an important part of interactive systems. It com-

municates the results of an interaction, making it visible and un-

derstandable. Feedback answers questions across four categories,

speciically the user’s location on a chain of tasks, current state of

the system, future state of the system, and the outcome of an action

[20]. Feedback not only informs users of whether they are moving

closer to accomplishing a task or not, but also when errors occur

and how to address them.

Prior studies showed that feedback can provide users with a

better understanding of the system, facilitating a swift transition

from novice to expert [13]. However, most current tangibles are

passive and do not provide any feedback on tangible interactions

[23]. They usually rely on an additional device to provide feedback

(e.g., an interactive tabletop), conining the interaction space within

the proximity of that device. Some tangibles provide visual feed-

back on the display, when available (i.e., notiication window), but

this feedback often occludes the information on the screen. It also

typically requires a user action upon receipt (i.e., a tap to discard

a notiication window) afecting the natural low of the task at

hand [2]. In this paper, we propose augmenting tangibles with a

low-resolution edge display (Figure 1) to provide real-time visual

feedback on user interactions and the current state of the system.

The paper is organized as follows. We start with a literature

review of existing work exploring non-graphical displays for visual

feedback. We then discuss the motivation of the work and propose

a guideline for mapping diferent types of edge feedback to difer-

ent tangible interactions. We apply it to an existing tangible and

tabletop system to demonstrate its efectiveness. First, we evaluate

it in an informal investigation. Then, we apply it to a new system

to further evaluate its efectiveness in a formal study. Finally, we

conclude with speculation on future extensions to the work.

2 RELATED WORK

Harrison et al. [9] explored the types of information conveyed by a

single-color point light in current devices, and investigated whether

their design space could be enriched by using varying light intensity

over time. They identiied twenty-four diferent light behaviors,

and based on an evaluation, recommended eight of them to use in

a mobile device domain (such as, diferent beacon, brightness, lash,

pulse, and blinking behaviors). Xu and Lyons [33] developed two

smartwatch prototypes to demonstrate that low-resolution edge

feedback could ofer smart capabilities. The irst prototype was

augmentedwith four LEDs in the four directions and the secondwas

augmented with twelve LEDs arranged corresponding to the hours

on a watch face. Both used diferent colors, brightness, and blinking
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patterns to provide users with feedback on diferent smartwatch

apps and their respective parameters.

Visual feedback on tangible objects is not as well explored. Al-

most all current tangibles provide visual feedback on an integrated

display screen when available [3, 12, 16, 17] or on an external dis-

play, such as an interactive wall [14, 26] or interactive tabletop

[25, 32]. Some have also explored lights [10] and other forms of

feedback, such as haptic [21ś23] and auditory [4]. Several tangibles

provide visual feedback through a small number of LEDs [6, 18, 28].

However, no prior work has explored the full potential of low-

resolution edge display in the context of tangibles.

3 MOTIVATION

3.1 Ease of Use

In theory, edge feedback should require fewer mental and percep-

tual activities than other feedback types. Particularly, textual and

graphical feedback require users to move their foci from one part

of the visual ield to another and usually require a user-action upon

receipt (i.e., a tap on the screen to remove the notiication window).

These restrict the possibility of task parallelism and reduce user

performance both in terms of speed and accuracy [2]. Edge feed-

back takes advantage of the ambient vision modality, freeing the

perceptual load in the parallel foveal and auditory modalities [30].

3.2 Independent/Of-the-Table Interactions

Edge feedback could also extend the support for independent in-

teractions with active tangibles. In a tangible and tabletop system,

it could aid users in performing actions of-the-table since they

could conirm and verify the actions through the feedback pro-

vided on the tangibles, without being reliant on the tabletop display.

Some existing tangibles (e.g., Siftables [17]) support independent

interactions by providing visual feedback on an integrated display

screen. Yet, this often occludes the information on the screen. Edge

feedback is free from this limitation.

3.3 Group Interactions

Edge feedback could further extend group interactions with tangi-

bles, where multiple tangibles are used to interact with the system.

Many systems provide visual feedback on an external display for

group interactions (e.g., stacking), which forces users to work in

proximity to the display. This also limits independent interactions

with the tangibles. Some active tangibles provide visual feedback

on integrated display screens. However, when stacked, users could

only see the display of the top tangible. Some active tangibles (e.g.,

Stackables [12]) attach the display on the side to address this, but

are not intended for tabletop interaction since the side-screen is

diicult to see when on the table. Low-resolution edge display aug-

mented tangibles address this by providing feedback directly on

the tangibles that is visible even when tangibles are stacked.

3.4 Extensibility

Although we explore edge feedback in the context of active tangi-

bles, low-resolution edge displays could also be added to other in-

teractive systems (i.e., wearable devices and computer accessories).

4 FEEDBACK MAPPING

Table 1 proposes a guideline for mapping diferent types of edge

feedback to diferent tangible interactions. This guideline is inspired

by Harrison et al. [9] and Xu and Lyons’s [33] indings and current

practices in consumer products (e.g., [1, 8]) and has been evaluated

through a series of informal lab tests. Apart from notiications on

direct interactions through tap, touch, tilt, shake, lip, rotate, and

tactile buttons on the tangibles, and indirect interactions through

another device or system, Table 1 also provides guidelines on how

to notify the users of a valid or an invalid group interaction, such

as stacking and neighboring. Figure 1 illustrates several types of

edge feedback from the Actibles. Recommendations from [29] were

used for determining how categories might be nominally coded.

Particularly, the use of few categorical colors (between 5 and 10)

and separation of those colors in the CIELUV color space were

considered in the feedback mapping [29, p. 123]

Figure 1: Edge feedback on diferent tangible interactions:

(a) inactive tangible, (b) turned on tangible, (c) tangibles rep-

resenting diferent items, (d) tilt notiication, (e) neighbor-

ing notiication, (f) valid neighboring, (g) invalid neighbor-

ing, (h) stacking notiication, (i) valid stacking, and (j) in-

valid stacking.

5 DEMONSTRATION

In this section, we demonstrate how augmenting an existing system

with a low-resolution increases its functionality and usability, and

provides users with a better understanding of the system.

5.1 Custom Active Tangibles

We used custom active tangibles, called Actibles for our research.

The software and hardware implementations of Actibles can be

found in [7]. Actibles implement LED feedback through an array of

24 RGB LEDs in a circular pattern, which communicate with appli-

cations over a TCP/IP server. Preset functions were programmed

for each of the feedback animations, which can be called by appli-

cations to relect the system’s state.

1Pulse or lash rates may difer for diferent tangibles and systems [27], but must occur
for a limited number of times, preferably once or twice
2Or any other color representing a neutral state
3Or the full array if the angle or direction cannot be determined or is irrelevant
4Illumination represent values, that is brighter or dimmer for higher or lower values,
respectively
5For instance, if three tangibles are nearby/stacked, represented by color x, y, and z,
then all tangibles will use alternating colors x-y-z
6If an invalid tangible/s cannot be determined then all tangibles blink in red (or a color
picked to represent error)
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Table 1: Edge feedback on direct/indirect tangible interactions.

# Manipulation Interaction Action Edge Feedback

Single Direct On Changes via tap, touch, Turn on a tangible Pulse/blink1 in multiple colors & change color to white2

Tangible /of-the-table tilt, shake, or tactile buttons Detection conirmation Blink along the edge corresponding to tilt/rotate angle3

Change an item Change color to represent the new item

Change a value Change illumination4

Remove an item Change color to white

Turn of a tangible Turn of display

Indirect changes via another device Change an item Change color to represent the new item & pulse/blink

or systems actions Change a value Change illumination & pulse/blink

Remove an item Pulse/blink & change color to white

Multiple Direct On Neighboring Detection conirmation Blink along the edges that have been neighbored

Tangibles /of-the-table Valid combination Change all tangibles to alternating colors5

Invalid combination Pulse/blink the invalid tangible in color red6

Stacking Detection conirmation Flash along all edges

Valid conirmation Change all tangibles to alternating colors

Invalid conirmation Pulse/blink the invalid tangible in color red

5.2 Interactive Tabletop

A MultiTaction, 1397mm, 1209.6 × 680.4mm touchscreen area at

1920 × 1080-pixel resolution [19], placed horizontally on a custom

stand was used as an interactive tabletop. It detected the tangibles

using its default 2D iducial marker tracker.

5.3 Sparse Tangibles

We picked Sparse Tangibles [3], an existing tangible and tabletop

biology system to demonstrate the efectiveness of the proposed

feedback mapping. Sparse Tangibles enables collaborative explo-

ration of gene and protein networks on an interactive tabletop

using active tangibles. Its custom tangibles were also augmented

with LED arrays, but they were not used to provide feedback.

5.4 Tangible Interactions

The system enables users to select an organism or a gene network

and construct expressive queries using active tangibles. To load a

network on the tabletop, the user irst navigates to the intended

organism/gene by performing vertical swipes on the tangible touch-

screen, selects the item by tapping, and then places the tangible

on the tabletop. To perform a query on the loaded network, the

user picks up another tangible, selects a query parameter, such as

hub density, and stacks it on the other tangible/s. This updates the

network to display only hubs that meet the selected criteria. The

user can remove an item from a tangible by shaking it.

5.5 Feedback Mapping

We assigned diferent feedback types to all supported tangible in-

teractions and state changes based on Table 1. We used the colors

green and blue to represent organisms and genes, respectively, since

they are commonly used in biological network visualization tools.

Similarly, we used red and white to represent errors and neutral

states. These color choices were informed by [29].

Figure 2: A researcher demonstrating the active tangibles

augmented with LED arrays to the participants before the

informal evaluation.

6 AN INFORMAL EVALUATION

We invited ive experienced computational biologists to our lab to

interact with the customized Sparse Tangibles system, in which

the active tangible interactions were augmented with edge-display

feedback as described above (Figure 2).

The participants were all employees of a biomedical research

center. Their age ranged from 20 to 39 years, on average 29.6 (SD

= 6.8). Three of them were male, and two were female. They all

had experience working with biological networks. Three of them

responded that they frequently work with biological networks and

two responded that they occasionally do.

All participants arrived together. We then demonstrated the sys-

tem and allowed them to interact with it. They were then asked to

ill out a short questionnaire involving the following questions: (Q1)

edge feedback enhances tangible-tabletop interaction experience,

(Q2) provides a better understanding of the system and system

events, (Q3) facilitates of-the-table interactions, and (Q4) will be

useful in other interactive systems. A seven-point Likert scale was

used for the questionnaire.
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Table 2: Results of the informal evaluation.

Question Disagree Neutral Agree

Q1) User Experience 0% 60% 40%

Q2) Understandability 0% 40% 60%

Q3) Of-the-table 20% 60% 20%

Q4) Extensibility 0% 20% 80%

7 AN EXPERIMENT

The informal evaluation highlighted some design considerations

for an empirical evaluation. Firstly, the feedback should be repre-

sentative of the system’s state, which is implemented through LED

color. It is also important that there aren’t too many states (colors)

for the user to keep track of. Furthermore, the informal evaluation

revealed that the LEDs’ coded color difered signiicantly than their

perceived color in some cases, and thus the blue color category was

changed to purple.

One participant (female, 31 years) said, ł[Paraphrased] The sys-

tem can be more useful for exploring biological systems.ž This

informed the use of a food chain exploration application, a simple

biological system. Another participant (female, 20 years) mentioned

that the feedback would be useful for iltering or comparison inter-

actions. This inspired the use of a tree structure, in which feedback

is instrumental for testing relationships between diferent nodes.

Using these design considerations, we conducted an empirical study

to further investigate the usability and usefulness of edge feedback

and the proposed feedback mapping convention.

7.1 Tangible-Tabletop System

The system, a simple implementation of a hierarchical tree structure,

was designed to test the efects of feedback (Figure 3). Conceptu-

ally, every category in the system is represented by a node, with

relationships between them being represented by links. Five gen-

eral categories were implemented: Producers, at the topmost level

of the tree hierarchy, were assigned the color green. Herbivores,

Omnivores, and Carnivores, all being children of Producers, were

assigned the color yellow. Decomposers, being the bottommost gen-

eral category and a child to Herbivores, Omnivores, and Carnivores,

were assigned the color purple.

Figure 3: A screenshot of the system, along with the auto-

matic logging mechanism (right).

7.1.1 System Navigation. Actibles, the primary devices through

which the system was controlled, can each represent a single node.

A user can navigate through the tree with the Actible via tilting

and touch gestures.

7.1.2 System Interactions. In the food chain system, three types of

relationship tests were implemented: parent-child, sibling-sibling,

and container-contents. These relationships can be tested through

Actible neighboring interactions, where direction is considered.

Testing of parent-child node relationships can be tested by bump-

ing the bottom of the Actible representing the parent node to the

top of the Actible representing the child node. Testing of sibling-

sibling node relationships can be tested by bumping the left or right

side of an Actible to right or left side of the other Actible. Testing

of container-contents relationships can be done by stacking the

Actible representing the container onto the Actible representing the

contents. The result of the relationship test is valid if the test accu-

rately relects the relative positioning of the nodes in the hierarchy.

Otherwise, the result of the test is invalid.

7.1.3 System State Feedback. An Actible can relect the state of

the system in two ways. First, the Actible’s LEDs can replicate the

color of the node it represents. Secondly, it displays the name of

the current node along with the container it is contained in, with

the current node’s color as the screen’s background color.

7.1.4 System Interactions Feedback. The system shows the result

of relationship testing in two ways. The irst form of feedback of

a relationship test is entirely on the screen of the Actible after a

relationship test, the result (either valid or invalid) is displayed as

an alert popup that must be tapped to continue Actible use. The

decision to add a conirmation that the user must acknowledge is

informed from informal and pilot testing and from the literature.

We observed users either łmissingž on-screen popups when their

duration was too short or tapping to dismiss them anyways when

their durations were longer. The second form of feedback from a

relationship test is through the Actible’s LEDs. If the test is valid,

the Actible displays a query animation, incorporating the colors of

the two tested nodes. If the test is invalid, the Actible again displays

a query animation, but this time incorporating the colors of the

two tested nodes along with a red error color.

7.2 Task Deinition

Tasks in this system were deined as three components: Node A,

type of relationship between Node A and Node B, and Node B. A

statement about the relationship between any two nodes in the food

chain (e.g., Decomposers contain Producers, Carnivores is parent

of Decomposers, etc.) was given, and participants were asked to

determine if that relationship was valid or not by using the sys-

tem. Their responses, being either łtruež or łfalsež, were compared

against the ground truth tree hierarchy to determine if they were

successful in that task. The type of active tangible interaction to

test the relationship varied based on where the nodes fell in the

hierarchy.

7.3 Task Selection

Task selection of the user study revolved around three main con-

siderations: diiculty, task type, and task validity.
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First, since navigation of the tree always started at the root

node, some nodes took longer than others to navigate to. Con-

sequently, some tasks required more navigation than others to

complete. Hence, tasks were classiied based on the minimum num-

ber of navigation actions required to complete them, as follows:

easy (2-4 actions), moderate (5-7 actions), and diicult (> 8 actions).

An even distribution of these diiculty levels was assigned to the

participants, so that each received an equal mixture of easy, mod-

erate, and diicult tasks.Tasks required diferent active tangible

interactions based on which relationship was being tested.

7.4 Apparatus

Similar to the informal investigation, this study also used theActibles

[7] and a MultiTaction interactive table. However, we developed a

new tangible-tabletop biological system for the study, discussed in

a later section. In addition, the study used an Acer Aspire 40 cm HD

laptop to substitute for the tabletop to explore of-the-table interac-

tions. The study also used a Google tablet to enable participants to

respond to a post-study survey using a digital form.

7.5 Participants

Twelve participants from the university community took part in the

user study. Their age ranged from 19 to 55 years, on average 26.64

years (SD = 10.06). One participant refused to disclose his age. Nine

of them were male and three were female. All were experienced

touchscreen users (on average 6.1 years of experience, SD = 4.9).

None of them used a tangible-tabletop on a regular basis. They

were compensated with $10 for participating in the study.

7.6 Design

We used a within-subjects design for the study. There were two

conditions: feedback and no-feedback. The conditions were coun-

terbalanced to eliminate the efect of learning. There were 12 tasks

per condition. All participants performed the same tasks, but in a

random order to eliminate a potential confound. Hence, the design

was: 12participants × 2conditions × 12tasks = 288tasks in total.

7.7 Procedure

Participants were irst lead into a quiet area where the study was

held. They were asked to sign a consent form before performing

any task. A brief introduction (∼ 5 minutes) of the tangible-tabletop

system was given to each participant. This included a description

of the food chain tree-hierarchy (which was visible to them), the

active tangibles, and how the active tangibles were used in the

system. The modes of feedback were also described.

Then, the experimenter performed a brief demonstration (∼

10 minutes) of the system on a tabletop to show how to work

with the system. The visual tree hierarchy was visible during the

demonstration. A maximum of four example tasks were performed

to showcase all diferent types of feedback, including feedback for

a valid and an invalid neighboring and stacking.

Participants were then asked to perform the two sets of tasks, one

with and another without edge feedback. Half of the participants

started with the feedback and the other half started with the no-

feedback condition. A small break (2-5 minutes) was given between

the conditions. The tasks were presented to them in a random order,

and were performed with the visual tree removed to investigate

of-the-table interactions. As can be seen in Figure 4, participants

Figure 4: A volunteer participating in the inal user study.

primarily interacted with three components during the study. The

task list (center) contained all tasks the participants needed to

complete for the session, in order. The user was instructed to write

down their answer to each of the tasks as they completed them. The

system cheat sheet (right) was given to the participant as a reference

in case they were unsure about any interaction or feedback of

the system. This is a common practice to alleviate the efects of

learning a novel system [11, 15]. The two Actibles were the primary

component through which the user performed the study. After the

completion of all tasks, participants were asked to ill out a post-

study questionnaire on a seven-point Likert scale using a tablet.

Color Categories

Green - Producers Yellow – Herbivores, 

Omnivores, and Carnivores

Purple –
Decomposers

Red – Error Code

X contains Y:

Stack X on top of Y

X siblings with Y:

neighbor X on either side of Y

X parent of Y:

Neighbor X above Y

Interaction Feedback
Relationship is valid if LED animation 

contains both color categories

Relationship is invalid if LED 

animation contains red error color

Figure 5: The cheat sheet used during the study.

7.8 Metrics

The following metrics were calculated during the study. Task com-

pletion time (minutes) is the time participants took on average to

perform a task. Success rate (%) is the average percentage of correct

answers by the participants. Touch interaction (#) is the average

number of touches performed per task on the tangible interface.

8 RESULTS

We used a repeated measures ANOVA for all analysis. Figure 6

summarizes the results of the experiment.

8.1 Task Completion Time

AnANOVA failed to identify a signiicant efect of condition on task

completion time (F1,11 = 0.04,p > .05). On average participants

took 11.94 (SD = 4.15) and 11.56 (SD = 3.83) minutes to perform a

task during the feedback and no-feedback conditions, respectively.

Figure 6 illustrates this.
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Figure 6: Results of the experiment. a) Average task comple-

tion time in each condition. b) Average success rate in each

condition. c) Average touch interaction per task in each con-

dition. Error bars signify ±1 standard deviation

Table 3: User feedback from the experiment.

Question Disagree Neutral Agree

Q1) User Experience 16.7% 16.7% 66.6%

Q2) Learnability 33.3% 8.3% 58.4%

Q3) Of-the-table 41.7% 16.6% 41.7%

Q4) Extensibility 8.3% 25.1% 66.6%

Q5) Performance 33.3% 8.3% 58.4%

8.2 Success Rate

An ANOVA failed to identify a signiicant efect of condition on

success rate (F1,11 = 0,p > .05). Average success rate for the no-

feedback and feedback conditions were 96.53% (SD = 6.33) and

96.53% (SD = 7.18), respectively (Figure 6).

8.3 Touch Interaction

An ANOVA identiied a signiicant efect of condition on touch

interaction (F1,11 = 100.26,p < .000005). On average participants

performed 2.26 (SD = 0.53) and 4.53 (SD = 0.95) touch interac-

tions per task, taking on average 3.81 (SD = 1.45) and 8.82 sec-

onds (SD = 3.01), during the feedback and no-feedback conditions,

respectively. A Tukey-Kramer test revealed that participants per-

formed signiicantly more touch interactions with the no-feedback

condition (Figure 6).

9 USER FEEDBACK

Upon completion of all conditions, participants were asked to com-

plete a digital form on a tablet. It presented them with statements

about their overall experience and performance, ease of use and

learnability, of-the-table interactions, and extensibility of/with the

low-resolution edge display. They were asked to rate the statements

on 7-point Likert scale, where ł1ž represented łstrongly disagreež,

ł4ž represented łneutralž, and ł7ž represented łstrongly agreež. Table

3 summarizes the user feedback results.

10 DISCUSSION

Results revealed that participants took about the same time to per-

form the tasks and yielded comparable success rate (Figure 6) in

both conditions. This suggests that edge feedback did not improve

their performances. Yet, interestingly, user feedback revealed that

most participants felt that edge feedback improved their overall per-

formance ( Table 3 Q2 ). Participants perceived a positive impact of

edge feedback on their performance, despite having no measurable

impact (similar to the informal study, Q1 and Q2).

Similar to the informal study, most participants found our feed-

back mapping intuitive and easy to remember ( Table 3 Q2 ). They

also felt that edge feedback and the convention used for feedback

mapping can be useful in other interactive systems (Table 3 Q4).

Comparatively more participants felt that edge feedback further en-

abled of-the-table interaction than the participants in the informal

study (Table 3 Q3) This could be because in the inal study partici-

pants used the system for an extended period of time, giving them

a better grasp of the system. Inexperienced users might ind edge

feedback more useful since the inal study recruited inexperienced

biologists to work with a biological system.

This inding, along with some of the qualitative indings of this

and other work ([5, 22, 27, 31, 32]), tease out insights to the practical

beneit of using ambient lighting for feedback. The irst is that color

is an efective way of coding categorical information regarding

a system’s state. Whether it be a physical type of transit station

(bus, subway, or street car [24]) or an abstract type of organism,

ambient feedback can convey nominal information without using

screen space on a device. Furthermore, it constitutes a mode of

feedback of user interaction that is parallel to, not necessarily a

substitution for, conventional onscreen feedback. In our system,

information about an organism can be displayed on screen, whereas

its broader type can be inferred from its color. To generalize, for

devices that are smaller in screen size, the screen is a great place to

display acute, precise information, where ambient light feedback

can display broader, scoping information.

11 CONCLUSION AND FUTUREWORK

We proposed augmenting tangible objects with a low-resolution

edge display to provide real-time visual feedback on the current

state of the system. We presented a guideline for mapping difer-

ent types of edge feedback to diferent tangible interactions. We

demonstrated its efectiveness in an informal evaluation that re-

vealed that visual feedback provided by the low-resolution edge

display provides a better understanding of the system, and can be

useful in other interactive systems. We also conducted an empirical

study that revealed that while edge feedback reduces the number

of touch interactions required to complete a task, it has no efect on

completion time or success rate. The decrease in touch interactions

shows that edge feedback removes the need to dismiss conventional,

onscreen feedback alerts or dialogue boxes, also eliminating the

homing time required to do so. Finally, edge feedback augments

onscreen feedback in a parallel fashion, so tasks that require si-

multaneous use of ambient and foveal vision might reveal a more

distinct diference in task performance. In the future, we will extend

our guideline to support more actions and explore edge display in

the context of smaller tangibles that cannot incorporate 24 LEDs.
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